Home
Class 12
MATHS
Show that the solutions of the equation ...

Show that the solutions of the equation `[(x,y),(z,t)]^2=0 are[(x,y),(z,t)]=[(+-sqrt(alphabeta),-beta),(alpha,+-sqrt(alphabeta))]`, where `alpha,beta` are arbitrary.

Text Solution

Verified by Experts

Given equation is `[(x,y),(z,t)]^(2)=[(0,0),(0,0)]`
`implies [(x,y),(z,t)][(x,y),(z,t)]=[(x^(2)+yz,xy+yt),(zx+tz,zy+t^(2))]=[(0,0),(0,0)]`
`implies x^(2)+yz=0` (1)
`y(x+t)=0` (2)
`z(x+t)=0` (3)
`yz+t^(2)=0` (4)
From (1) and (4), we have `x^(2)=t^(2)` or `x= pm t`
Case I : If `x=t`, then from (2) and (3), we get
`y=0, z=0`
then from (1), x=0=t.
Case II : If x = -t, then (2) and (3) are satified for all values of y and z.
If we take `y=-beta, z=alpha`, then from (1), `x= pm sqrt(alpha beta)=-t`
Obviously, case I is included in case II `(alpha=0=beta)`.
Hence, the general solution of the given equation is
`x=-t= pm sqrt(alpha beta), y=-beta, z=alpha`
`implies [(x,y),(z,t)]=[(pm sqrt(alpha beta),-beta),(alpha, pm sqrt(alpha beta))]`, where `alpha, beta` are arbitrary
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^(2)-bx+b=0 , prove that sqrt((alpha)/(beta))+sqrt((beta)/(alpha))-sqrt((b)/(a))=0 .

If alpha,beta are the roots of the equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alphabeta .

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If the roots of the equation a x^2-b x+c=0a r ealpha,beta, then the roots of the equation b^2c x^2-a b^(2x)+a^3=0 are 1/(alpha^3+alphabeta),1/(beta^3+alphabeta) b. 1/(alpha^2+alphabeta),1/(beta^2+alphabeta) c. 1/(alpha^4+alphabeta),1/(beta^4+alphabeta) d. none of these

If alpha and beta ( alpha'<'beta') are the roots of the equation x^2+b x+c=0, where c<0

If alpha, beta are the roots of the equation x^(2)+alphax + beta = 0 such that alpha ne beta and ||x-beta|-alpha|| lt alpha , then

If alpha,beta are the roots of the equation x^(2)+px+q=0 , find the value of (a) alpha^(3)beta+alphabeta^(3) (b) alpha^(4)+alpha^(2)beta^(2)+beta^(4) .

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha and beta are the zeros of the quadratic polynomial p(s)=3s^2-6s+4 , find the value of alpha/beta+beta/alpha+2(1/alpha+1/beta)+3alphabeta .

CENGAGE ENGLISH-MATRICES-ILLUSTRATION
  1. If A=((p,q),(0,1)), then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(...

    Text Solution

    |

  2. Let A=[(2,1),(0,3)] be a matrix. If A^(10)=[(a,b),(c,d)] then prove th...

    Text Solution

    |

  3. Show that the solutions of the equation [(x,y),(z,t)]^2=0 are[(x,y),(...

    Text Solution

    |

  4. Let a be square matrix. Then prove that A A^(T) and A^(T) A are symmet...

    Text Solution

    |

  5. If A, B are square materices of same order and B is a skewsymmetric ma...

    Text Solution

    |

  6. If a and B are square matrices of same order such that AB+BA=O, then p...

    Text Solution

    |

  7. Let A=[(1,2),(-1,3)] .If A^6=kA-205I then then numerical quantity of...

    Text Solution

    |

  8. Let A, B, C, D be (not necessarily square) real matrices such that A^T...

    Text Solution

    |

  9. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  10. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  11. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  12. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  13. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  14. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  15. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  16. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  17. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  18. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  19. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  20. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |