Home
Class 12
MATHS
If A and B are square matrices of the sa...

If A and B are square matrices of the same order such that `A B = B A`, then proveby induction that `A B^n=B^n A`. Further, prove that `(A B)^n=A^n B^n`for all `n in N`.

Text Solution

AI Generated Solution

To prove the statements given in the question, we will use the principle of mathematical induction. We will break down the proof into two parts. ### Part 1: Prove that \( AB^n = B^n A \) for all \( n \in \mathbb{N} \) **Base Case (n = 1):** For \( n = 1 \): \[ AB^1 = AB = BA ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A ,Ba n dC three matrices of the same order, then prove that A=B rArr A+C=B+C

If A and B are any two different square matrices of order n with A^3=B^3 and A(AB)=B(BA) then

Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then AB = AC then B = C

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If A and B are two sets such that n(A)=115 ,\ n(B)=326 ,\ n(A-B)=47 , then write n(AuuB)dot

Let A ,B be two matrices such that they commute, then for any positive integer n , (i) A B^n=B^n A (ii) (A B)^n =A^n B^n

If B, C are square matrices of order n and if A = B + C , BC = CB , C^2=0 then which of the following is true for any positive integer N

If there are three square matrix A, B, C of same order satisfying the equation A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2)) , then prove that det .(B-C) = 0, n in N .

If A and B are square matrices of order n , then prove that Aa n dB will commute iff A-lambdaIa n dB-lambdaI commute for every scalar lambdadot

If A and B are square matrices of order n , then prove that Aa n dB will commute iff A-lambdaIa n dB-lambdaI commute for every scalar lambdadot

CENGAGE ENGLISH-MATRICES-ILLUSTRATION
  1. Let A=[(1,2),(-1,3)] .If A^6=kA-205I then then numerical quantity of...

    Text Solution

    |

  2. Let A, B, C, D be (not necessarily square) real matrices such that A^T...

    Text Solution

    |

  3. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  4. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  5. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  6. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  7. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  8. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  9. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  10. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  11. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  12. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  13. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  14. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |

  15. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  16. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  17. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  18. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  19. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  20. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |