Home
Class 12
MATHS
If A=[-1 1 0-2] , then prove that A^2+3A...

If `A=[-1 1 0-2]` , then prove that `A^2+3A+2I=Odot` Hence, find `Ba n dC` matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Text Solution

AI Generated Solution

To solve the problem, we will follow these steps: ### Step 1: Define the Matrix A Given the matrix \( A \): \[ A = \begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[0 1 0 0] , prove that (a I+b A)^n=a^n\ I+n a^(n-1)\ b A where I is a unit matrix of order 2 and n is a positive integer.

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

If A ,Ba n dC three matrices of the same order, then prove that A=B rArr A+C=B+C

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .

If A and B are square matrices of order 3 such that |A| = – 1, |B| = 3 , then find the value of |2AB| .

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot

CENGAGE ENGLISH-MATRICES-ILLUSTRATION
  1. Let A, B, C, D be (not necessarily square) real matrices such that A^T...

    Text Solution

    |

  2. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  3. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  4. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  5. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  6. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  7. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  8. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  9. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  10. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  11. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  12. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  13. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |

  14. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  15. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  16. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  17. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  18. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  19. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  20. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |