Home
Class 12
MATHS
If A=[(3,-4),(1,-1)] then find tr. (A^(2...

If `A=[(3,-4),(1,-1)]` then find tr. `(A^(2012))`.

Text Solution

AI Generated Solution

To find the trace of \( A^{2012} \) where \( A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Express \( A \) in terms of its Jordan form To find \( A^{2012} \), we first need to find the eigenvalues of \( A \). The eigenvalues can be found by solving the characteristic polynomial \( \det(A - \lambda I) = 0 \). \[ A - \lambda I = \begin{pmatrix} 3 - \lambda & -4 \\ 1 & -1 - \lambda \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Let A=[[1, 1,3], [5, 2,6],[-2,-1,-3]] . Find t r(A^(2012))

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Let three matrices A=[(2 ,1),( 4, 1)]; B=[(3, 4),( 2, 3)] and C=[(3,-4),(-2,3)], then tr(A) + tr((ABC)/2) + tr((A(BC)^2)/4) + tr((A(BC)^3)/8) + ......∞ (a)6 (b) 9 (c) 12 (d) None of these

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .

If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)] , then tr(Aadj(adjA)) is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

CENGAGE ENGLISH-MATRICES-ILLUSTRATION
  1. If A and B are square matrices of the same order such that A B = B A,...

    Text Solution

    |

  2. If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC m...

    Text Solution

    |

  3. If A=[(3,-4),(1,-1)] then find tr. (A^(2012)).

    Text Solution

    |

  4. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |

  5. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  6. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  7. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  8. Consider point P(x, y) in first quadrant. Its reflection about x-axis ...

    Text Solution

    |

  9. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  10. If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

    Text Solution

    |

  11. The matrix A=[-5-8 0 3 5 0 1 2-] is a. idempotent matrix b. involut...

    Text Solution

    |

  12. If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)], prove that A is orthogonal i...

    Text Solution

    |

  13. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  14. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  15. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  16. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  17. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  18. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  19. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  20. Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |