Home
Class 12
MATHS
Let f : RtoR be a function such that f(x...

Let `f : RtoR` be a function such that `f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3),x in R`. Then f(2) equals

A

8

B

-2

C

-4

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(2) \) given the function: \[ f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3) \] ### Step 1: Identify the derivatives at specific points We need to find \( f'(1) \), \( f''(2) \), and \( f'''(3) \). We will use the function definition to derive these values. ### Step 2: Differentiate \( f(x) \) First, we differentiate \( f(x) \): 1. **First Derivative**: \[ f'(x) = 3x^2 + 2x f'(1) + f''(2) \] 2. **Second Derivative**: \[ f''(x) = 6x + 2f'(1) \] 3. **Third Derivative**: \[ f'''(x) = 6 \] ### Step 3: Substitute \( x = 1 \) into \( f'(x) \) Now, substituting \( x = 1 \) into \( f'(x) \): \[ f'(1) = 3(1)^2 + 2(1)f'(1) + f''(2) \] This simplifies to: \[ f'(1) = 3 + 2f'(1) + f''(2) \] Rearranging gives us: \[ f'(1) - 2f'(1) = 3 + f''(2) \implies -f'(1) = 3 + f''(2) \implies f'(1) + f''(2) = -3 \tag{1} \] ### Step 4: Substitute \( x = 2 \) into \( f''(x) \) Next, we substitute \( x = 2 \) into \( f''(x) \): \[ f''(2) = 6(2) + 2f'(1) = 12 + 2f'(1) \] Substituting this into equation (1): \[ f'(1) + (12 + 2f'(1)) = -3 \] This simplifies to: \[ f'(1) + 12 + 2f'(1) = -3 \implies 3f'(1) + 12 = -3 \implies 3f'(1) = -15 \implies f'(1) = -5 \] ### Step 5: Find \( f''(2) \) Now substituting \( f'(1) = -5 \) back into the equation for \( f''(2) \): \[ f''(2) = 12 + 2(-5) = 12 - 10 = 2 \] ### Step 6: Find \( f'''(3) \) From our earlier calculation, we have: \[ f'''(3) = 6 \] ### Step 7: Substitute values back into \( f(2) \) Now we can substitute \( f'(1) \), \( f''(2) \), and \( f'''(3) \) back into the original function to find \( f(2) \): \[ f(2) = 2^3 + 2^2(-5) + 2(2) + 6 \] Calculating each term: \[ = 8 - 20 + 4 + 6 \] Combining these gives: \[ = 8 + 4 + 6 - 20 = 18 - 20 = -2 \] Thus, the value of \( f(2) \) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 5|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. f(x) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then

Let f:RtoR be a function given by f(x+y)=f(x)f(y) for all x,y in R .If f'(0)=2 then f(x) is equal to

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

Let f:R rarr R be a continuous function such that f(x)-2f(x/2)+f(x/4)=x^(2) . f(3) is equal to

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){-5}

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){26}