Home
Class 12
MATHS
If xloge(logex)-x^2+y^2=4(ygt0)",then" d...

If `xlog_e(log_ex)-x^2+y^2=4(ygt0)",then" dy//dx" at " x=e` is equal to

A

`e/(4+e^2)`

B

`((1+2e))/(2sqrt(4+e^2))`

C

`((2e-1))/(2sqrt(4+e^2))`

D

`((1+2e))/(sqrt(4+e^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) for the equation given: \[ x \log_e(\log_e x) - x^2 + y^2 = 4 \quad (y > 0) \] at the point \(x = e\). ### Step 1: Differentiate the equation implicitly We start by differentiating both sides of the equation with respect to \(x\). \[ \frac{d}{dx}\left(x \log_e(\log_e x)\right) - \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0 \] Using the product rule on the first term: \[ \frac{d}{dx}(x \log_e(\log_e x)) = \log_e(\log_e x) + x \cdot \frac{1}{\log_e x} \cdot \frac{1}{x} - 2x + 2y \frac{dy}{dx} \] So we have: \[ \log_e(\log_e x) + \frac{1}{\log_e x} - 2x + 2y \frac{dy}{dx} = 0 \] ### Step 2: Rearranging the equation Rearranging gives us: \[ 2y \frac{dy}{dx} = 2x - \log_e(\log_e x) - \frac{1}{\log_e x} \] Thus, \[ \frac{dy}{dx} = \frac{2x - \log_e(\log_e x) - \frac{1}{\log_e x}}{2y} \] ### Step 3: Substitute \(x = e\) Now we substitute \(x = e\) into our equation to find \(y\): \[ e \log_e(\log_e e) - e^2 + y^2 = 4 \] Since \(\log_e e = 1\): \[ e \cdot 1 - e^2 + y^2 = 4 \] This simplifies to: \[ e - e^2 + y^2 = 4 \] Rearranging gives: \[ y^2 = 4 + e^2 - e \] ### Step 4: Substitute \(x = e\) into \(\frac{dy}{dx}\) Now we substitute \(x = e\) and \(y = \sqrt{4 + e^2 - e}\) into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{2e - \log_e(\log_e e) - \frac{1}{\log_e e}}{2y} \] Substituting \(\log_e(\log_e e) = 0\) and \(\frac{1}{\log_e e} = 1\): \[ \frac{dy}{dx} = \frac{2e - 0 - 1}{2y} = \frac{2e - 1}{2y} \] ### Step 5: Final substitution for \(y\) Substituting \(y = \sqrt{4 + e^2 - e}\): \[ \frac{dy}{dx} = \frac{2e - 1}{2\sqrt{4 + e^2 - e}} \] ### Final Result Thus, the value of \(\frac{dy}{dx}\) at \(x = e\) is: \[ \frac{dy}{dx} = \frac{2e - 1}{2\sqrt{4 + e^2 - e}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 5|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If xlog_e(log_ex)-x^2+y^2=4 then ((dy)/(dx))_(atx=e) is equal to (A) (2e+1)/ sqrt(4+e^2) (B) e/(2sqrt(4+e^2)) (C) (2e+1)/(2(4+e^2)) (D) (2e-1)/(2sqrt(4+e^2))

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

If xlog_(e)y+ylog_(e)x=5 , then (dy)/(dx) is

If x=e^(y+e^(y+e^(y+...oo))),xgt0 , then (dy)/(dx) is equal to

Find dy/dx if x=e^(2y)

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to