Home
Class 12
MATHS
int(sin(101x).sin^(99)x)dx equals...

`int(sin(101x).sin^(99)x)dx` equals

Text Solution

Verified by Experts

`I=intsin(100x+x)sin^(99)xdx`
`=int sin100x cosx sin^(99)xdx+int sinx cos100x sin^(99) x dx`
`=int sin100x cosx sin^(99)xdx+int cos100x .sin^(100) x dx`
`=int sin100x. cosx sin^(99)xdx+sin^(100) x .(sin 100x)/(100) -int (100sin^(99)xcosx.sin 100x)/(100)dx`
`=(sin^(100)x sin 100x)/(100)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

int(2sinx)/(3+sin2x)dx is equal to

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals

int(sin2x)/(sin5xsin3x)dx is equal to

int(1)/(1+3 sin ^(2)x)dx is equal to

int (dx)/(sin(x-a)sin(x-b)

int_0^(2pi)sin^(100)xcos^(99)x dx

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int2sin(x)dx is equal to:

int3sin(x)dx is equal to: