Home
Class 12
MATHS
Consider the functions f(x)={(x+1",",x...

Consider the functions
`f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):}`
The range of the function `f(g(x))` is

A

`[1,5]`

B

`[2,3]`

C

`[1,2] cup [3,5]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(g(x)) \), we need to analyze the functions \( f(x) \) and \( g(x) \) given in the problem. ### Step 1: Define the functions The functions are defined as follows: - \( f(x) = \begin{cases} x + 1 & \text{if } x \leq 1 \\ 2x + 1 & \text{if } 1 < x \leq 2 \end{cases} \) - \( g(x) = \begin{cases} x^2 & \text{if } -1 \leq x < 2 \\ x + 2 & \text{if } 2 \leq x \leq 3 \end{cases} \) ### Step 2: Find the range of \( g(x) \) 1. For \( -1 \leq x < 2 \): - The function \( g(x) = x^2 \) takes values from \( g(-1) = 1 \) to \( g(2) = 4 \) (but does not include 4). - Thus, the range of \( g(x) \) in this interval is \( [0, 4) \). 2. For \( 2 \leq x \leq 3 \): - The function \( g(x) = x + 2 \) takes values from \( g(2) = 4 \) to \( g(3) = 5 \). - Thus, the range of \( g(x) \) in this interval is \( [4, 5] \). Combining both intervals, the overall range of \( g(x) \) is: \[ [0, 5] \] ### Step 3: Find the range of \( f(g(x)) \) Now we will analyze \( f(g(x)) \) based on the range of \( g(x) \). 1. **For \( g(x) \in [0, 1] \)**: - Here, we use \( f(x) = x + 1 \). - Thus, \( f(g(x)) = g(x) + 1 \) which gives us the range \( [0 + 1, 1 + 1] = [1, 2] \). 2. **For \( g(x) \in (1, 2] \)**: - Here, we use \( f(x) = 2x + 1 \). - Thus, \( f(g(x)) = 2g(x) + 1 \). - The minimum value occurs at \( g(x) = 1 \): \( 2(1) + 1 = 3 \). - The maximum value occurs at \( g(x) = 2 \): \( 2(2) + 1 = 5 \). - Therefore, the range for this part is \( (3, 5] \). ### Step 4: Combine the ranges Now we combine the ranges from both cases: - From the first case, we have \( [1, 2] \). - From the second case, we have \( (3, 5] \). Thus, the overall range of \( f(g(x)) \) is: \[ [1, 2] \cup (3, 5] \] ### Final Answer The range of the function \( f(g(x)) \) is: \[ [1, 2] \cup (3, 5] \] ---

To find the range of the function \( f(g(x)) \), we need to analyze the functions \( f(x) \) and \( g(x) \) given in the problem. ### Step 1: Define the functions The functions are defined as follows: - \( f(x) = \begin{cases} x + 1 & \text{if } x \leq 1 \\ 2x + 1 & \text{if } 1 < x \leq 2 \end{cases} \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Two functions are defined as under : f(x)={(x+1, x le 1), (2x+1, 1 < x le 2):} and g(x)={(x^2, -1 le x le 2), (x+2, 2 le x le 3):} Find fog and gof

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} ...

    Text Solution

    |

  2. Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} ...

    Text Solution

    |

  3. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  4. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  5. Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x,...

    Text Solution

    |

  6. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  7. If (f(x))^2*f((1-x)/(1+x))=64 x AA in Df then

    Text Solution

    |

  8. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  9. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  10. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  11. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  12. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  13. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  14. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  15. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  16. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  17. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  18. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  19. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  20. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |