Home
Class 12
MATHS
Consider the function f(x) satisfying th...

Consider the function `f(x)` satisfying the identity `f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1.`
The domain of `y=sqrt(g(x))` is

A

`(-oo,(1-sqrt(5))/(2)] cup [1,(1+sqrt(5))/(2)]`

B

`(-oo,(1-sqrt(5))/(2)] cup (0,1)cup [(1+sqrt(5))/(2),oo)`

C

`[(-1-sqrt(5))/(2),0] cup [(-1+sqrt(5))/(2),1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the domain of the function \( y = \sqrt{g(x)} \), where \( g(x) = 2f(x) - x + 1 \) and \( f(x) \) satisfies the identity \( f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \). ### Step 1: Understand the identity involving \( f(x) \) We start with the identity: \[ f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \] This identity will help us find a general form for \( f(x) \). ### Step 2: Replace \( x \) in the identity We can replace \( x \) with \( \frac{x-1}{x} \) in the identity: \[ f\left(\frac{x-1}{x}\right) + f\left(\frac{\frac{x-1}{x}-1}{\frac{x-1}{x}}\right) = 1 + \frac{x-1}{x} \] Calculating \( \frac{\frac{x-1}{x}-1}{\frac{x-1}{x}} \): \[ \frac{x-1-x}{x-1} = \frac{-1}{x-1} \] Thus, the identity becomes: \[ f\left(\frac{x-1}{x}\right) + f\left(-\frac{1}{x-1}\right) = 1 + \frac{x-1}{x} \] ### Step 3: Subtract the two identities Now, we can subtract the two identities: \[ f(x) - f\left(-\frac{1}{x-1}\right) = x - \left(1 + \frac{x-1}{x}\right) \] This simplifies to: \[ f(x) - f\left(-\frac{1}{x-1}\right) = x - 1 - \frac{x-1}{x} \] ### Step 4: Find \( f(x) \) Continuing from the previous steps, we can derive \( f(x) \) in terms of \( x \). After some algebra, we find: \[ f(x) = \frac{x^3 - x^2 - 1}{2x(x-1)} \] ### Step 5: Substitute \( f(x) \) into \( g(x) \) Now, substitute \( f(x) \) into the expression for \( g(x) \): \[ g(x) = 2f(x) - x + 1 = 2\left(\frac{x^3 - x^2 - 1}{2x(x-1)}\right) - x + 1 \] This simplifies to: \[ g(x) = \frac{x^3 - x^2 - 1}{x(x-1)} - x + 1 \] ### Step 6: Simplify \( g(x) \) After simplifying \( g(x) \), we find: \[ g(x) = \frac{x^2 - x - 1}{x(x-1)} \] ### Step 7: Find the domain of \( y = \sqrt{g(x)} \) For \( y = \sqrt{g(x)} \) to be defined, \( g(x) \) must be greater than or equal to zero: \[ \frac{x^2 - x - 1}{x(x-1)} \geq 0 \] ### Step 8: Determine the critical points The critical points are found by solving \( x^2 - x - 1 = 0 \) and \( x(x-1) = 0 \). The roots of \( x^2 - x - 1 = 0 \) are: \[ x = \frac{1 \pm \sqrt{5}}{2} \] The roots of \( x(x-1) = 0 \) are \( x = 0 \) and \( x = 1 \). ### Step 9: Test intervals We need to test the intervals determined by the critical points: 1. \( (-\infty, 0) \) 2. \( (0, 1 - \frac{\sqrt{5}}{2}) \) 3. \( (1 - \frac{\sqrt{5}}{2}, 1) \) 4. \( (1, 1 + \frac{\sqrt{5}}{2}) \) 5. \( (1 + \frac{\sqrt{5}}{2}, \infty) \) ### Step 10: Identify the valid intervals After testing these intervals, we find that \( g(x) \geq 0 \) in the intervals: \[ (-\infty, 1 - \frac{\sqrt{5}}{2}) \cup (1 + \frac{\sqrt{5}}{2}, \infty) \] ### Conclusion Thus, the domain of \( y = \sqrt{g(x)} \) is: \[ (-\infty, 1 - \frac{\sqrt{5}}{2}) \cup (1 + \frac{\sqrt{5}}{2}, \infty) \]

To solve the problem, we need to find the domain of the function \( y = \sqrt{g(x)} \), where \( g(x) = 2f(x) - x + 1 \) and \( f(x) \) satisfies the identity \( f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \). ### Step 1: Understand the identity involving \( f(x) \) We start with the identity: \[ f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x, AA x in R-{0,1} and g(x)=2f(x)-x+1 Then range of y=g(x) is:

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

consider the function f(x) = 1(1+(1)/(x))^(x) The domain of f(x) is

consider the function f(x) = 1(1+(1)/(x))^(x) The domain of f(x) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} ...

    Text Solution

    |

  2. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  3. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  4. Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x,...

    Text Solution

    |

  5. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  6. If (f(x))^2*f((1-x)/(1+x))=64 x AA in Df then

    Text Solution

    |

  7. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  8. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  9. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  10. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  11. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  12. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  13. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  14. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  15. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  16. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  17. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  18. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  19. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  20. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |