Home
Class 12
MATHS
Consider the function f(x) satisfyig the...

Consider the function f(x) satisfyig the identity `f(x)+f((x-1)/x)=1+x, AA x in R-{0,1}` and `g(x)=2f(x)-x+1` Then range of y=g(x) is:

A

`(-oo,5]`

B

`[1,oo)`

C

`(-oo,1) cup [5, oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( g(x) = 2f(x) - x + 1 \), where \( f(x) \) satisfies the identity \( f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \) for \( x \in \mathbb{R} \setminus \{0, 1\} \), we will follow these steps: ### Step 1: Analyze the given functional equation We start with the equation: \[ f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \] This is our first equation (let's call it Equation 1). ### Step 2: Substitute \( x = \frac{x-1}{x} \) Next, we substitute \( x \) with \( \frac{x-1}{x} \) in Equation 1: \[ f\left(\frac{x-1}{x}\right) + f\left(\frac{\frac{x-1}{x} - 1}{\frac{x-1}{x}}\right) = 1 + \frac{x-1}{x} \] This simplifies to: \[ f\left(\frac{x-1}{x}\right) + f\left(\frac{-1}{x}\right) = \frac{1}{x} \] Let’s call this Equation 2. ### Step 3: Substitute \( x = -\frac{1}{x} \) Now, we substitute \( x \) with \( -\frac{1}{x} \) in Equation 1: \[ f\left(-\frac{1}{x}\right) + f\left(\frac{-\frac{1}{x} - 1}{-\frac{1}{x}}\right) = 1 - \frac{1}{x} \] This simplifies to: \[ f\left(-\frac{1}{x}\right) + f\left(\frac{1+x}{1}\right) = 1 - \frac{1}{x} \] Let’s call this Equation 3. ### Step 4: Combine Equations Now we have three equations: 1. \( f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \) (Equation 1) 2. \( f\left(\frac{x-1}{x}\right) + f\left(-\frac{1}{x}\right) = \frac{1}{x} \) (Equation 2) 3. \( f\left(-\frac{1}{x}\right) + f(x+1) = 1 - \frac{1}{x} \) (Equation 3) We can subtract Equation 2 from Equation 1 to eliminate \( f\left(\frac{x-1}{x}\right) \): \[ f(x) - f\left(-\frac{1}{x}\right) = (1 + x) - \frac{1}{x} \] This gives us a new equation. ### Step 5: Solve for \( f(x) \) By solving these equations, we can express \( f(x) \) in terms of \( x \). After some algebraic manipulation, we can find a specific form for \( f(x) \). ### Step 6: Find \( g(x) \) Once we have \( f(x) \), we can substitute it into the expression for \( g(x) \): \[ g(x) = 2f(x) - x + 1 \] ### Step 7: Determine the range of \( g(x) \) To find the range of \( g(x) \), we analyze the expression: \[ y = g(x) = \frac{x^2 - x - 1}{x(x-1)} \] Cross-multiplying gives us: \[ yx^2 - yx = x^2 - x - 1 \] Rearranging leads to a quadratic equation in \( x \): \[ (1 - y)x^2 + (y - 1)x + 1 = 0 \] For \( g(x) \) to have real values, the discriminant must be non-negative: \[ D = (y - 1)^2 - 4(1 - y) \cdot 1 \geq 0 \] ### Step 8: Solve the discriminant inequality Expanding and simplifying gives us: \[ y^2 - 6y + 5 \geq 0 \] Factoring leads to: \[ (y - 1)(y - 5) \geq 0 \] This inequality holds for: \[ y \in (-\infty, 1] \cup [5, \infty) \] ### Final Answer Thus, the range of \( g(x) \) is: \[ (-\infty, 1] \cup [5, \infty) \]

To find the range of the function \( g(x) = 2f(x) - x + 1 \), where \( f(x) \) satisfies the identity \( f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \) for \( x \in \mathbb{R} \setminus \{0, 1\} \), we will follow these steps: ### Step 1: Analyze the given functional equation We start with the equation: \[ f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \] This is our first equation (let's call it Equation 1). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1. The domain of y=sqrt(g(x)) is

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Let y = f (x) such that xy = x+y +1, x in R-{1} and g (x) =x f (x) The minimum value of g (x) is:

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  2. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  3. Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x,...

    Text Solution

    |

  4. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  5. If (f(x))^2*f((1-x)/(1+x))=64 x AA in Df then

    Text Solution

    |

  6. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  7. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  8. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  9. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  10. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  11. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  12. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  13. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  14. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  15. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  16. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  17. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  18. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  19. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  20. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |