Home
Class 12
MATHS
If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx i...

If `(f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f),` then
The domain of `f(x)` is

A

`[0,oo)`

B

`R-{1}`

C

`(-oo,oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ (f(x))^2 \cdot f\left(\frac{1-x}{1+x}\right) = 64x \] ### Step 1: Substitute \( x \) with \( \frac{1-x}{1+x} \) We will replace \( x \) in the original equation with \( \frac{1-x}{1+x} \): \[ f\left(\frac{1-x}{1+x}\right)^2 \cdot f\left(\frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}}\right) = 64 \cdot \frac{1-x}{1+x} \] ### Step 2: Simplify the second term Now, we need to simplify the second term in the equation: \[ \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}} = \frac{\frac{(1+x) - (1-x)}{1+x}}{\frac{(1+x) + (1-x)}{1+x}} = \frac{\frac{2x}{1+x}}{\frac{2}{1+x}} = x \] ### Step 3: Rewrite the equation Now we can rewrite the equation as: \[ f\left(\frac{1-x}{1+x}\right)^2 \cdot f(x) = 64 \cdot \frac{1-x}{1+x} \] ### Step 4: Divide the two equations Now we have two equations: 1. \( (f(x))^2 \cdot f\left(\frac{1-x}{1+x}\right) = 64x \) 2. \( f\left(\frac{1-x}{1+x}\right)^2 \cdot f(x) = 64 \cdot \frac{1-x}{1+x} \) We can divide the first equation by the second: \[ \frac{(f(x))^2 \cdot f\left(\frac{1-x}{1+x}\right)}{f\left(\frac{1-x}{1+x}\right)^2 \cdot f(x)} = \frac{64x}{64 \cdot \frac{1-x}{1+x}} \] This simplifies to: \[ \frac{f(x)}{f\left(\frac{1-x}{1+x}\right)} = \frac{x(1+x)}{1-x} \] ### Step 5: Find the form of \( f(x) \) From the above equation, we can express \( f(x) \) in terms of \( x \): \[ f(x) = k \cdot \frac{x(1+x)}{1-x} \] where \( k \) is a constant. ### Step 6: Determine the domain of \( f(x) \) The function \( f(x) \) will be undefined when the denominator is zero: \[ 1 - x = 0 \implies x = 1 \] Thus, the domain of \( f(x) \) is all real numbers except \( x = 1 \). ### Final Answer The domain of \( f(x) \) is: \[ D_f = \mathbb{R} \setminus \{1\} \]

To solve the problem, we start with the equation given: \[ (f(x))^2 \cdot f\left(\frac{1-x}{1+x}\right) = 64x \] ### Step 1: Substitute \( x \) with \( \frac{1-x}{1+x} \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f), then The value of f(9//7) is

If (f(x))^2*f((1-x)/(1+x))=64 x AA in D_f then

If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

If f(x)=sin(log)_e{(sqrt(4-x^2))/(1-x)} , then the domain of f(x) is _____ and its range is __________.

If f(x)=sin(log)_e{(sqrt(4-x^2))/(1-x)} , then the domain of f(x) is _____ and its range is __________.

If domain of y=f(x) is xin[-3,2] , then the domain of f([x]) is

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

If f(x)=(sqrt(x-1))/(x) , what is the domain of f(x) ?

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

Let a function f(x)s a t i sfi e sf(x)+f(2x)+f(2-x)+f(1+x)=AAx in Rdot Then find the value of f(0)dot

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  2. If (f(x))^2*f((1-x)/(1+x))=64 x AA in Df then

    Text Solution

    |

  3. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  4. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  5. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  6. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  7. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  8. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  9. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  10. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  11. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  12. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  13. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  14. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  15. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  16. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  17. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  18. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  19. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  20. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |