Home
Class 12
MATHS
f(x)={(x-1",",-1 le x le 0),(x^(2)",",0l...

`f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx`
Consider the functions `h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|.`
then

A

It is a periodic function with period `pi`.

B

The range is [0, 1].

C

The domain is R.

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the functions \( f(x) \) and \( g(x) \) and then derive the functions \( h_1(x) \) and \( h_2(x) \). ### Step 1: Define the functions The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} x - 1 & \text{for } -1 \leq x \leq 0 \\ x^2 & \text{for } 0 < x \leq 1 \end{cases} \] The function \( g(x) \) is defined as: \[ g(x) = \sin x \] ### Step 2: Analyze \( h_1(x) = f(|g(x)|) \) First, we will compute \( |g(x)| \): \[ |g(x)| = |\sin x| \] Now, we need to find \( f(|g(x)|) \). The range of \( |\sin x| \) is from 0 to 1, so we will consider two cases based on the definition of \( f(x) \). 1. **When \( 0 \leq |\sin x| \leq 1 \)**: - Since \( |\sin x| \) is always non-negative and can be at most 1, we will use the second part of the piecewise function: \[ f(|g(x)|) = f(|\sin x|) = (|\sin x|)^2 \quad \text{for } 0 \leq |\sin x| \leq 1 \] Thus, \[ h_1(x) = |\sin x|^2 = \sin^2 x \] ### Step 3: Analyze \( h_2(x) = |f(g(x))| \) Next, we compute \( f(g(x)) \): \[ f(g(x)) = f(\sin x) \] We need to consider the range of \( \sin x \): - \( \sin x \) ranges from -1 to 1. 1. **When \( -1 \leq \sin x \leq 0 \)**: - We use the first part of the piecewise function: \[ f(\sin x) = \sin x - 1 \] 2. **When \( 0 < \sin x \leq 1 \)**: - We use the second part of the piecewise function: \[ f(\sin x) = (\sin x)^2 \] Now, we need to find \( |f(g(x))| \): - For \( -1 \leq \sin x \leq 0 \): \[ |f(\sin x)| = | \sin x - 1 | = 1 - \sin x \quad (\text{since } \sin x \leq 0) \] - For \( 0 < \sin x \leq 1 \): \[ |f(\sin x)| = |(\sin x)^2| = (\sin x)^2 \] Thus, we can summarize \( h_2(x) \): \[ h_2(x) = \begin{cases} 1 - \sin x & \text{for } -1 \leq \sin x \leq 0 \\ (\sin x)^2 & \text{for } 0 < \sin x \leq 1 \end{cases} \] ### Summary of Results - \( h_1(x) = \sin^2 x \) - \( h_2(x) = \begin{cases} 1 - \sin x & \text{for } -1 \leq \sin x \leq 0 \\ (\sin x)^2 & \text{for } 0 < \sin x \leq 1 \end{cases} \)

To solve the problem, we will analyze the functions \( f(x) \) and \( g(x) \) and then derive the functions \( h_1(x) \) and \( h_2(x) \). ### Step 1: Define the functions The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} x - 1 & \text{for } -1 \leq x \leq 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):} Discuss the continuity

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  2. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  3. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  4. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  5. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  6. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  7. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  8. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  9. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  10. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  11. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  12. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  13. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  14. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  15. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  16. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  17. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  18. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  19. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  20. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |