Home
Class 12
MATHS
f(x)={(x-1",",-1 le x le 0),(x^(2)",",0l...

`f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx`
Consider the functions `h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|.`
Which of the following is not true about `h_(2)(x)`?

A

The domain is R

B

It is periodic with period `2pi`.

C

The range is [0, 1].

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( h_1(x) \) and \( h_2(x) \) based on the given functions \( f(x) \) and \( g(x) \). ### Step 1: Define the functions We have: - \( f(x) = \begin{cases} x - 1 & \text{for } -1 \leq x \leq 0 \\ x^2 & \text{for } 0 < x \leq 1 \end{cases} \) - \( g(x) = \sin x \) ### Step 2: Analyze \( h_1(x) = f(|g(x)|) \) 1. **Calculate \( |g(x)| \)**: - Since \( g(x) = \sin x \), we have \( |g(x)| = |\sin x| \). - The range of \( |\sin x| \) is from 0 to 1. 2. **Determine the piece of \( f(x) \) to use**: - For \( 0 \leq |\sin x| \leq 1 \), we will use the second piece of \( f(x) \): \( f(x) = x^2 \). - Thus, \( h_1(x) = f(|g(x)|) = (|\sin x|)^2 = \sin^2 x \). ### Step 3: Analyze \( h_2(x) = |f(g(x))| \) 1. **Calculate \( f(g(x)) \)**: - For \( g(x) = \sin x \), we need to determine where \( \sin x \) lies in the domain of \( f(x) \). - The range of \( \sin x \) is from -1 to 1. 2. **Evaluate \( f(g(x)) \)**: - For \( -1 \leq \sin x \leq 0 \), we use the first piece of \( f(x) \): \( f(x) = x - 1 \). - Thus, \( f(\sin x) = \sin x - 1 \). - For \( 0 < \sin x \leq 1 \), we use the second piece of \( f(x) \): \( f(x) = x^2 \). - Thus, \( f(\sin x) = (\sin x)^2 \). 3. **Combine the results**: - Therefore, we can write: \[ h_2(x) = \begin{cases} |\sin x - 1| & \text{for } -1 \leq \sin x \leq 0 \\ |(\sin x)^2| & \text{for } 0 < \sin x \leq 1 \end{cases} \] - Since \( |(\sin x)^2| = (\sin x)^2 \), we can simplify: \[ h_2(x) = \begin{cases} 1 - \sin x & \text{for } -1 \leq \sin x < 0 \\ (\sin x)^2 & \text{for } 0 < \sin x \leq 1 \end{cases} \] ### Step 4: Determine the properties of \( h_2(x) \) 1. **Periodicity**: - Since \( \sin x \) is periodic with period \( 2\pi \), both pieces of \( h_2(x) \) will also be periodic with period \( 2\pi \). 2. **Range**: - The range of \( h_2(x) \) is from 0 to 2, since \( |\sin x - 1| \) can reach a maximum of 2 and \( (\sin x)^2 \) can reach a maximum of 1. ### Conclusion: Identify which statement is not true about \( h_2(x) \) - The statements regarding \( h_2(x) \) could include: 1. It is periodic. 2. Its range is [0, 2]. 3. It is continuous. 4. It is not defined for some \( x \). Given our analysis, we can conclude that all statements about \( h_2(x) \) are true except for any statement that suggests it is not defined for some \( x \), as \( h_2(x) \) is defined for all \( x \).

To solve the problem, we need to analyze the functions \( h_1(x) \) and \( h_2(x) \) based on the given functions \( f(x) \) and \( g(x) \). ### Step 1: Define the functions We have: - \( f(x) = \begin{cases} x - 1 & \text{for } -1 \leq x \leq 0 \\ x^2 & \text{for } 0 < x \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. then

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Consider f(x)=|1-x|,1 le xle2 and g(x)=f(x)+b sin.(pi)/(2)x, 1 le xle 2 then which of the following is correct?

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):} Discuss the continuity

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  2. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  3. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  4. f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx ...

    Text Solution

    |

  5. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  6. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  7. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  8. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  9. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  10. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  11. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  12. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  13. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  14. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  15. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  16. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  17. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  18. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  19. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  20. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |