Home
Class 12
MATHS
Let f(x)=f1(x)-2f2 (x), where ,where f1...

Let `f(x)=f_1(x)-2f_2 (x)`, where ,where `f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1))` and `f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1))` and let `g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3}))` for `-3 le x le -1` the range of `g(x)` is

A

`[-1, 3]`

B

`[-1,-15]`

C

`[-1, 9]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the functions \( f_1(x) \), \( f_2(x) \), and \( g(x) \) as given in the question. ### Step 1: Define \( f_1(x) \) and \( f_2(x) \) 1. **For \( f_1(x) \)**: - When \( |x| < 1 \): \( f_1(x) = \min(x^2, |x|) \) - When \( |x| \leq 1 \): \( f_1(x) = \max(x^2, |x|) \) 2. **For \( f_2(x) \)**: - When \( |x| < 1 \): \( f_2(x) = \min(x^2, |x|) \) - When \( |x| \leq 1 \): \( f_2(x) = x^2 \) ### Step 2: Analyze \( f_1(x) \) - For \( |x| < 1 \): - \( x^2 \) is always less than \( |x| \) for \( |x| < 1 \), hence \( f_1(x) = x^2 \). - For \( |x| = 1 \): - \( f_1(1) = \max(1^2, 1) = 1 \) - \( f_1(-1) = \max(1^2, 1) = 1 \) ### Step 3: Analyze \( f_2(x) \) - For \( |x| < 1 \): - Similar to \( f_1(x) \), \( f_2(x) = x^2 \). - For \( |x| = 1 \): - \( f_2(1) = 1^2 = 1 \) - \( f_2(-1) = 1^2 = 1 \) ### Step 4: Define \( f(x) \) Now we can define \( f(x) \): - For \( |x| < 1 \): \[ f(x) = f_1(x) - 2f_2(x) = x^2 - 2x^2 = -x^2 \] - For \( |x| = 1 \): \[ f(1) = 1 - 2(1) = -1, \quad f(-1) = 1 - 2(1) = -1 \] ### Step 5: Analyze \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \min\{f(t) : -3 \leq t \leq x\} \text{ for } -3 \leq x \leq -1 \] ### Step 6: Find the range of \( g(x) \) 1. **Evaluate \( f(t) \) for \( t \in [-3, -1] \)**: - For \( t < -1 \), \( f(t) = -t^2 \). - At \( t = -1 \), \( f(-1) = -1 \). - At \( t = -3 \), \( f(-3) = -(-3)^2 = -9 \). 2. **Determine the minimum value of \( f(t) \)**: - As \( t \) moves from \(-3\) to \(-1\), \( f(t) \) decreases from \(-9\) to \(-1\). - Hence, the minimum value of \( f(t) \) in this interval is \(-9\) and the maximum is \(-1\). ### Step 7: Conclusion Thus, the range of \( g(x) \) for \( -3 \leq x \leq -1 \) is: \[ [-9, -1] \]

To solve the problem step by step, we will analyze the functions \( f_1(x) \), \( f_2(x) \), and \( g(x) \) as given in the question. ### Step 1: Define \( f_1(x) \) and \( f_2(x) \) 1. **For \( f_1(x) \)**: - When \( |x| < 1 \): \( f_1(x) = \min(x^2, |x|) \) - When \( |x| \leq 1 \): \( f_1(x) = \max(x^2, |x|) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= {{:(a-3x,,, -2 le x lt 0),( 4x+-3,,, 0 le x lt 1):},if f (x) has smallest valueat x=0, then range of a, is

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

If 02 le x le 2 , the maximum value of f(x)=1-x^(2) is

Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2} .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  2. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  3. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  4. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  5. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  6. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  7. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  8. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  9. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  10. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  11. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  12. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  13. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  14. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  15. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  16. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  17. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  18. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |

  19. Consider a differentiable function f:R rarr R for which f(1)=2 and f(x...

    Text Solution

    |

  20. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |