Home
Class 12
MATHS
Let f(x)={(2x+a",",x ge -1),(bx^(2)+3","...

Let `f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):}`
and `g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):}`
`g(f(x))` is not defined if

A

`a in (10,oo), b in (5,oo)`

B

`a in (4,10), b in (5,oo)`

C

`a in (10,oo), b in (0,1)`

D

`a in (4,10), b in (1, 5)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine where \( g(f(x)) \) is not defined, we need to analyze the functions \( f(x) \) and \( g(x) \) given in the problem. ### Step 1: Analyze the Function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 2x + a & \text{if } x \ge -1 \\ bx^2 + 3 & \text{if } x < -1 \end{cases} \] For \( g(f(x)) \) to be defined, \( f(x) \) must yield values that are within the domain of \( g(x) \). ### Step 2: Analyze the Function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \begin{cases} x + 4 & \text{if } 0 \le x \le 4 \\ -3x - 2 & \text{if } -2 < x < 0 \end{cases} \] The domain of \( g(x) \) is \( -2 < x \le 4 \). ### Step 3: Determine the Range of \( f(x) \) 1. **For \( x \ge -1 \)**: \[ f(x) = 2x + a \] At \( x = -1 \): \[ f(-1) = 2(-1) + a = -2 + a \] As \( x \) increases, \( f(x) \) will also increase. Thus, the minimum value of \( f(x) \) when \( x \ge -1 \) is \( -2 + a \). 2. **For \( x < -1 \)**: \[ f(x) = bx^2 + 3 \] As \( x \) approaches \( -1 \) from the left, the value of \( f(x) \) approaches: \[ f(-1) = b(-1)^2 + 3 = b + 3 \] Since \( bx^2 \) is a parabola opening upwards (if \( b > 0 \)), the minimum value occurs at \( x = 0 \) (not applicable here since \( x < -1 \)). Thus, we consider values as \( x \) approaches \( -1 \). ### Step 4: Conditions for \( g(f(x)) \) to be Defined For \( g(f(x)) \) to be defined, the output of \( f(x) \) must lie within the domain of \( g(x) \), which is \( -2 < x \le 4 \). 1. **From \( f(x) = 2x + a \)**: \[ -2 < 2x + a \le 4 \] - For the lower bound: \[ -2 < 2x + a \implies 2x > -2 - a \implies x > \frac{-2 - a}{2} \] - For the upper bound: \[ 2x + a \le 4 \implies 2x \le 4 - a \implies x \le \frac{4 - a}{2} \] 2. **From \( f(x) = bx^2 + 3 \)**: \[ -2 < bx^2 + 3 \implies bx^2 > -5 \implies x^2 > \frac{-5}{b} \quad (b > 0) \] \[ bx^2 + 3 \le 4 \implies bx^2 \le 1 \implies x^2 \le \frac{1}{b} \] ### Step 5: Find Values of \( a \) and \( b \) From the conditions derived, we can summarize: - For \( 2x + a \): - \( x > \frac{-2 - a}{2} \) - \( x \le \frac{4 - a}{2} \) - For \( bx^2 + 3 \): - \( x^2 > \frac{-5}{b} \) (valid only if \( b > 0 \)) - \( x^2 \le \frac{1}{b} \) ### Conclusion To find where \( g(f(x)) \) is not defined, we need to ensure that the values of \( a \) and \( b \) do not satisfy the conditions derived above. Thus, \( g(f(x)) \) is not defined for: - \( a \ge 10 \) - \( b \le 5 \)

To determine where \( g(f(x)) \) is not defined, we need to analyze the functions \( f(x) \) and \( g(x) \) given in the problem. ### Step 1: Analyze the Function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  2. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  3. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  4. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  5. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  6. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  7. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  8. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  9. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  10. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  11. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  12. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  13. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  14. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  15. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  16. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  17. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  18. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |

  19. Consider a differentiable function f:R rarr R for which f(1)=2 and f(x...

    Text Solution

    |

  20. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |