Home
Class 12
MATHS
Let f(x)={(2x+a",",x ge -1),(bx^(2)+3","...

Let `f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):}`
and `g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):}`
If `a=2 and b=3,` then the range of `g(f(x))` is

A

`(-2,8]`

B

`(0, 8]`

C

`[4, 8]`

D

`[-1, 8]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( g(f(x)) \) given the functions \( f(x) \) and \( g(x) \), we will follow these steps: ### Step 1: Define the functions with given values of \( a \) and \( b \) Given: - \( a = 2 \) - \( b = 3 \) The function \( f(x) \) can be defined as: \[ f(x) = \begin{cases} 2x + 2 & \text{if } x \geq -1 \\ 3x + 3 & \text{if } x < -1 \end{cases} \] The function \( g(x) \) is defined as: \[ g(x) = \begin{cases} x + 4 & \text{if } 0 \leq x \leq 4 \\ -3x - 2 & \text{if } -2 < x < 0 \end{cases} \] ### Step 2: Find the range of \( f(x) \) 1. For \( x \geq -1 \): \[ f(x) = 2x + 2 \] When \( x = -1 \): \[ f(-1) = 2(-1) + 2 = 0 \] As \( x \) approaches \( \infty \), \( f(x) \) approaches \( \infty \). Therefore, the range for this part is \( [0, \infty) \). 2. For \( x < -1 \): \[ f(x) = 3x + 3 \] When \( x \) approaches \( -1 \): \[ f(-1) = 3(-1) + 3 = 0 \] As \( x \) approaches \( -\infty \), \( f(x) \) approaches \( -\infty \). Therefore, the range for this part is \( (-\infty, 0) \). Combining both parts, the overall range of \( f(x) \) is: \[ (-\infty, 0) \cup [0, \infty) = \mathbb{R} \] ### Step 3: Find the range of \( g(f(x)) \) Now we need to evaluate \( g(f(x)) \) based on the range of \( f(x) \). 1. Since \( f(x) \) can take any real value, we need to evaluate \( g(x) \) for the ranges: - For \( x \geq 0 \) (from \( f(x) \)): \[ g(x) = x + 4 \] The minimum value occurs at \( x = 0 \): \[ g(0) = 0 + 4 = 4 \] As \( x \) approaches \( \infty \), \( g(x) \) approaches \( \infty \). Thus, the range from this part is \( [4, \infty) \). 2. For \( x < 0 \) (from \( f(x) \)): \[ g(x) = -3x - 2 \] As \( x \) approaches \( 0 \) from the left: \[ g(0) = -3(0) - 2 = -2 \] As \( x \) approaches \( -\infty \): \[ g(x) \to \infty \] Thus, the range from this part is \( (-2, \infty) \). ### Step 4: Combine the ranges Combining the ranges from both parts: - From \( g(f(x)) \) when \( f(x) \geq 0 \): \( [4, \infty) \) - From \( g(f(x)) \) when \( f(x) < 0 \): \( (-2, \infty) \) The overall range of \( g(f(x)) \) is: \[ (-2, \infty) \] ### Final Answer The range of \( g(f(x)) \) is \( (-2, \infty) \). ---

To find the range of the function \( g(f(x)) \) given the functions \( f(x) \) and \( g(x) \), we will follow these steps: ### Step 1: Define the functions with given values of \( a \) and \( b \) Given: - \( a = 2 \) - \( b = 3 \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  2. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  3. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  4. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  5. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  6. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  7. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  8. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  9. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  10. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  11. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  12. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  13. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  14. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  15. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  16. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  17. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  18. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |

  19. Consider a differentiable function f:R rarr R for which f(1)=2 and f(x...

    Text Solution

    |

  20. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |