Home
Class 12
MATHS
Consider two functions f(x)={([x]",",-...

Consider two functions
`f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):}`
where [.] denotes the greatest integer function.
The number of integral points in the range of `g(f(x))` is

A

`[0, 2]`

B

`[-2, 0]`

C

`[-2,2]`

D

`[-2,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of integral points in the range of the composite function \( g(f(x)) \), where the functions \( f(x) \) and \( g(x) \) are defined as follows: 1. \( f(x) = \begin{cases} [x] & , -2 \leq x \leq -1 \\ |x| + 1 & , -1 < x \leq 2 \end{cases} \) 2. \( g(x) = \begin{cases} [x] & , -\pi \leq x < 0 \\ \sin x & , 0 \leq x \leq \pi \end{cases} \) ### Step 1: Determine the range of \( f(x) \) **For \( -2 \leq x \leq -1 \):** - Here, \( f(x) = [x] \). - The greatest integer function \( [x] \) will take values: - For \( x = -2 \), \( f(-2) = -2 \) - For \( x = -1 \), \( f(-1) = -1 \) - Thus, \( f(x) \) will take the values \( -2 \) and \( -1 \). **For \( -1 < x \leq 2 \):** - Here, \( f(x) = |x| + 1 \). - For \( -1 < x < 0 \), \( |x| = -x \) so \( f(x) = -x + 1 \). - As \( x \) approaches \( -1 \), \( f(x) \) approaches \( 2 \). - As \( x \) approaches \( 0 \), \( f(x) \) approaches \( 1 \). - Thus, \( f(x) \) takes values in the interval \( (1, 2) \). - For \( 0 < x \leq 2 \), \( |x| = x \) so \( f(x) = x + 1 \). - At \( x = 0 \), \( f(0) = 1 \). - At \( x = 2 \), \( f(2) = 3 \). - Thus, \( f(x) \) takes values in the interval \( (1, 3] \). Combining both parts, the range of \( f(x) \) is: - From \( -2 \) to \( -1 \) (inclusive) and from \( 1 \) to \( 3 \) (exclusive). ### Step 2: Determine the range of \( g(f(x)) \) Now, we need to evaluate \( g(f(x)) \) based on the range found for \( f(x) \). **Case 1: When \( f(x) \) is in the range \( [-2, -1] \):** - \( g(f(x)) = g([-2, -1]) \). - For \( -2 \leq x < 0 \), \( g(x) = [x] \). - Thus, \( g(-2) = -2 \) and \( g(-1) = -1 \). - Therefore, \( g(f(x)) \) takes values \( -2 \) and \( -1 \). **Case 2: When \( f(x) \) is in the range \( (1, 3] \):** - \( g(f(x)) = g(f(x)) = \sin(f(x)) \). - The sine function varies between \( 0 \) and \( 1 \) for \( x \) in the interval \( [0, \pi] \). - Therefore, \( g(f(x)) \) will take values in the interval \( (0, 1] \). ### Step 3: Combine the ranges Combining the ranges from both cases: - From \( g(f(x)) \), we have: - Values from case 1: \( -2, -1 \) - Values from case 2: \( (0, 1] \) ### Step 4: Identify integral points in the combined range The integral points in the combined range \( \{-2, -1\} \cup (0, 1] \) are: - From \( \{-2, -1\} \): \( -2, -1 \) - From \( (0, 1] \): The only integral point is \( 1 \). Thus, the integral points are \( -2, -1, 1 \). ### Final Count of Integral Points The total number of integral points in the range of \( g(f(x)) \) is **3**.

To solve the problem, we need to find the number of integral points in the range of the composite function \( g(f(x)) \), where the functions \( f(x) \) and \( g(x) \) are defined as follows: 1. \( f(x) = \begin{cases} [x] & , -2 \leq x \leq -1 \\ |x| + 1 & , -1 < x \leq 2 \end{cases} \) 2. \( g(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value Type|31 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Linked Comprehension Type
  1. If a0 = x,a(n+1)= f(an), where n = 0, 1, 2, ..., then answer thefoll...

    Text Solution

    |

  2. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  3. If a(0)=x,a(n+1)=f(a(n)), " where " n=0,1,2, …, then answer the follow...

    Text Solution

    |

  4. Let f(x)=f1(x)-2f2 (x), where ,where f1(x)={((min{x^2,|x|},|x|le 1),(...

    Text Solution

    |

  5. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  6. Let f(x)=f(1)(x)-2f(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x...

    Text Solution

    |

  7. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  8. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  9. Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",...

    Text Solution

    |

  10. Let f : R -> R is a function satisfying f(2-x) = f(2 + x) and f(20-x)...

    Text Solution

    |

  11. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  12. Let f:R to R be a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x) ...

    Text Solution

    |

  13. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  14. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  15. Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x...

    Text Solution

    |

  16. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  17. Consider a function f whose domain is [-3, 4] and range is [-2, 2] wit...

    Text Solution

    |

  18. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |

  19. Consider a differentiable function f:R rarr R for which f(1)=2 and f(x...

    Text Solution

    |

  20. Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f...

    Text Solution

    |