Home
Class 12
MATHS
Let f(x) = sin^(-1) x + cos^(-1) x ". T...

Let `f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 ` is equal to

A

`f(- 1/2)`

B

`f(k^(2) - 2k + 3), k in R`

C

`f(1/(1+ k^(2))), k in R`

D

`f(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1}(x) + \cos^{-1}(x) \) and determine which of the given options is equal to \( \frac{\pi}{2} \). ### Step 1: Understand the function \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = \sin^{-1}(x) + \cos^{-1}(x) \] We know a fundamental identity in inverse trigonometric functions: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \quad \text{for } x \in [-1, 1] \] ### Step 2: Evaluate the options Now we will evaluate each option to see if they equal \( \frac{\pi}{2} \). #### Option A: \( f\left(-\frac{1}{2}\right) \) Since \( -\frac{1}{2} \) is in the interval \([-1, 1]\): \[ f\left(-\frac{1}{2}\right) = \sin^{-1}\left(-\frac{1}{2}\right) + \cos^{-1}\left(-\frac{1}{2}\right) \] Calculating the values: \[ \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}, \quad \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3} \] Thus, \[ f\left(-\frac{1}{2}\right) = -\frac{\pi}{6} + \frac{2\pi}{3} = -\frac{\pi}{6} + \frac{4\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] So, Option A is valid. #### Option B: \( f(k^2 - 2k + 3) \) Next, we analyze \( k^2 - 2k + 3 \): \[ k^2 - 2k + 3 = (k-1)^2 + 2 \] This expression is always greater than or equal to 2 for all real \( k \). Since \( 2 > 1 \), this value does not lie in the interval \([-1, 1]\). Therefore, Option B is invalid. #### Option C: \( f\left(\frac{1}{1+k^2}\right) \) We check if \( \frac{1}{1+k^2} \) is in \([-1, 1]\): \[ \frac{1}{1+k^2} > 0 \quad \text{and} \quad \frac{1}{1+k^2} < 1 \quad \text{for all } k \in \mathbb{R} \] Thus, it lies in the interval \([-1, 1]\). Therefore, Option C is valid. #### Option D: \( f(-2) \) Since \(-2\) is not in the interval \([-1, 1]\), Option D is invalid. ### Conclusion The valid options that equal \( \frac{\pi}{2} \) are: - Option A: \( f\left(-\frac{1}{2}\right) = \frac{\pi}{2} \) - Option C: \( f\left(\frac{1}{1+k^2}\right) = \frac{\pi}{2} \) Thus, the final answer is that \( \frac{\pi}{2} \) is equal to options A and C. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x) . Then which of the following is /are TRUE.

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following statement(s) is / are TRUE ?

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Let f(x) = min ( tan^(-1) x, cot^(-1)x) " and " h ( x) = f ( x + 2) - pi //3 ". Let " x_(1), x_(2) ( "where " x_(1) lt x_(2)) be the integers in the range of h (x) , then the value of ( cos^(-1) ( cos x_(1)) + sin ^(-1) ( sin x_2)) is equal to

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The value of f(10) is equal to

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The area bounded by curve y = f(x) and x- axis from pi/2 le x le pi is equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |