Home
Class 12
MATHS
If f(x) = sin^(-1) x. cos^(-1) x. tan^(-...

If `f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x`, then which of the following statement (s) hold(s) good?

A

(a) The graph of `y = f(x)` does not lie above `x`-axis

B

(b) The non-negative difference between the maximum and the minimum value of the function ` y = f (x) " is " (3 pi^(6))/64`

C

(c) The function `y = f(x)` is not injective.

D

(d) Number of non-negative integers in the domain of `f(x)` is 2.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1} x \cdot \cos^{-1} x \cdot \tan^{-1} x \cdot \cot^{-1} x \cdot \sec^{-1} x \cdot \csc^{-1} x \) and determine which statements about it are true. ### Step 1: Determine the Domain of \( f(x) \) 1. **Identify the domains of each inverse trigonometric function:** - \( \sin^{-1} x \) and \( \cos^{-1} x \) have a domain of \( [-1, 1] \). - \( \tan^{-1} x \) and \( \cot^{-1} x \) have a domain of \( (-\infty, \infty) \). - \( \sec^{-1} x \) and \( \csc^{-1} x \) have a domain of \( (-\infty, -1] \cup [1, \infty) \). 2. **Find the intersection of these domains:** - The intersection of \( [-1, 1] \) (from \( \sin^{-1} x \) and \( \cos^{-1} x \)) and \( (-\infty, -1] \cup [1, \infty) \) (from \( \sec^{-1} x \) and \( \csc^{-1} x \)) is only the points \( -1 \) and \( 1 \). **Conclusion:** The domain of \( f(x) \) is \( \{-1, 1\} \). ### Step 2: Evaluate \( f(x) \) at the Domain Points 1. **Calculate \( f(1) \):** - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \cos^{-1}(1) = 0 \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \cot^{-1}(1) = \frac{\pi}{4} \) - \( \sec^{-1}(1) = 0 \) - \( \csc^{-1}(1) = \frac{\pi}{2} \) Therefore, \[ f(1) = \sin^{-1}(1) \cdot \cos^{-1}(1) \cdot \tan^{-1}(1) \cdot \cot^{-1}(1) \cdot \sec^{-1}(1) \cdot \csc^{-1}(1) = \frac{\pi}{2} \cdot 0 \cdot \frac{\pi}{4} \cdot \frac{\pi}{4} \cdot 0 \cdot \frac{\pi}{2} = 0 \] 2. **Calculate \( f(-1) \):** - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \cos^{-1}(-1) = \pi \) - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \cot^{-1}(-1) = \frac{3\pi}{4} \) - \( \sec^{-1}(-1) = \pi \) - \( \csc^{-1}(-1) = -\frac{\pi}{2} \) Therefore, \[ f(-1) = -\frac{\pi}{2} \cdot \pi \cdot -\frac{\pi}{4} \cdot \frac{3\pi}{4} \cdot \pi \cdot -\frac{\pi}{2} \] Simplifying this gives: \[ f(-1) = \left(-\frac{\pi}{2} \cdot -\frac{\pi}{2}\right) \cdot \left(\pi \cdot \pi\right) \cdot \left(-\frac{\pi}{4} \cdot \frac{3\pi}{4}\right) = \frac{3\pi^6}{64} \] ### Step 3: Analyze the Results 1. **Maximum and Minimum Values:** - The maximum value of \( f(x) \) is \( f(1) = 0 \). - The minimum value of \( f(x) \) is \( f(-1) = -\frac{3\pi^6}{64} \). 2. **Non-negative difference:** \[ \text{Non-negative difference} = 0 - \left(-\frac{3\pi^6}{64}\right) = \frac{3\pi^6}{64} \] ### Step 4: Check the Statements - **Statement A:** The graph of \( f(x) \) does not lie above the x-axis. **True** (since maximum is 0). - **Statement B:** The non-negative difference between the maximum and minimum value of the function \( y \) is equal to \( \frac{3\pi^6}{64} \). **True**. - **Statement C:** The function \( f(x) \) is not injective. **False** (since it only takes two values). - **Statement D:** The number of non-negative integers in the domain of \( f(x) \) is 2. **False** (only 1 non-negative integer, which is 1). ### Final Conclusion The correct statements are A and B. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(sec^(-1)x)+(sec^(-1)x)/(cosec^(-1)x)+(cosec^(-1)x)/(cot^(-1)x)+(cot^(-1)x)/(sin^(-1)x) . Then which of the following statements holds good?

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following statement(s) is / are TRUE ?

Draw the graph of y=cot^(-1)x+sec^(-1)x+cosec^(-1)x .

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Let f(x) = sin (sin^-1 2x) + cosec (cosec^-1 2x) + tan(tan^-1 2x) , then which one of the following statements is/are incorrect ?

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |