Home
Class 12
MATHS
Let alpha = 3 cos^(-1) (5/sqrt28) + 3 ta...

Let `alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4)`, then which of the following does not hold (s) good ?

A

`alpha lt pi " but " beta gt pi`

B

`alpha gt pi " but " beta lt pi`

C

Both `alpha " and " beta` are equal

D

`cos ( alpha + beta) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \(\alpha\) and \(\beta\) and determine which of the given options does not hold true. ### Step 1: Calculate \(\alpha\) Given: \[ \alpha = 3 \cos^{-1} \left(\frac{5}{\sqrt{28}}\right) + 3 \tan^{-1} \left(\frac{\sqrt{3}}{2}\right) \] Let: \[ \cos^{-1} \left(\frac{5}{\sqrt{28}}\right) = a \] Then: \[ \cos a = \frac{5}{\sqrt{28}} \] ### Step 2: Construct a right triangle for \(a\) Using the cosine definition: - Hypotenuse = \(\sqrt{28}\) - Base = 5 - Perpendicular = \(\sqrt{28^2 - 5^2} = \sqrt{28 - 25} = \sqrt{3}\) ### Step 3: Calculate \(\tan a\) From the triangle: \[ \tan a = \frac{\text{Perpendicular}}{\text{Base}} = \frac{\sqrt{3}}{5} \] Thus: \[ a = \tan^{-1} \left(\frac{\sqrt{3}}{5}\right) \] ### Step 4: Substitute back into \(\alpha\) Now substituting \(a\) back into the expression for \(\alpha\): \[ \alpha = 3 \tan^{-1} \left(\frac{\sqrt{3}}{5}\right) + 3 \tan^{-1} \left(\frac{\sqrt{3}}{2}\right) \] ### Step 5: Use the formula for \(\tan^{-1}(A) + \tan^{-1}(B)\) Using the formula: \[ \tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A + B}{1 - AB}\right) \] Let: \[ A = \frac{\sqrt{3}}{5}, \quad B = \frac{\sqrt{3}}{2} \] Calculating: \[ AB = \frac{\sqrt{3}}{5} \cdot \frac{\sqrt{3}}{2} = \frac{3}{10} \] Then: \[ A + B = \frac{\sqrt{3}}{5} + \frac{\sqrt{3}}{2} = \frac{2\sqrt{3} + 5\sqrt{3}}{10} = \frac{7\sqrt{3}}{10} \] Thus: \[ \alpha = 3 \tan^{-1} \left(\frac{\frac{7\sqrt{3}}{10}}{1 - \frac{3}{10}}\right) = 3 \tan^{-1} \left(\frac{7\sqrt{3}}{7}\right) = 3 \tan^{-1} \left(\sqrt{3}\right) \] Since \(\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}\): \[ \alpha = 3 \cdot \frac{\pi}{3} = \pi \] ### Step 6: Calculate \(\beta\) Given: \[ \beta = 4 \sin^{-1} \left(\frac{7\sqrt{2}}{10}\right) - 4 \tan^{-1} \left(\frac{3}{4}\right) \] Let: \[ \sin^{-1} \left(\frac{7\sqrt{2}}{10}\right) = b \] Then: \[ \sin b = \frac{7\sqrt{2}}{10} \] ### Step 7: Construct a right triangle for \(b\) Using the sine definition: - Hypotenuse = 10 - Perpendicular = \(7\sqrt{2}\) - Base = \(\sqrt{10^2 - (7\sqrt{2})^2} = \sqrt{100 - 98} = \sqrt{2}\) ### Step 8: Calculate \(\tan b\) From the triangle: \[ \tan b = \frac{\text{Perpendicular}}{\text{Base}} = \frac{7\sqrt{2}}{\sqrt{2}} = 7 \] Thus: \[ b = \tan^{-1}(7) \] ### Step 9: Substitute back into \(\beta\) Now substituting \(b\) back into the expression for \(\beta\): \[ \beta = 4 \tan^{-1}(7) - 4 \tan^{-1} \left(\frac{3}{4}\right) \] ### Step 10: Use the formula for \(\tan^{-1}(A) - \tan^{-1}(B)\) Using the formula: \[ \tan^{-1} A - \tan^{-1} B = \tan^{-1} \left(\frac{A - B}{1 + AB}\right) \] Calculating: \[ A = 7, \quad B = \frac{3}{4} \] Then: \[ AB = 7 \cdot \frac{3}{4} = \frac{21}{4} \] Thus: \[ \beta = 4 \tan^{-1} \left(\frac{7 - \frac{3}{4}}{1 + \frac{21}{4}}\right) = 4 \tan^{-1} \left(\frac{\frac{28}{4} - \frac{3}{4}}{\frac{25}{4}}\right) = 4 \tan^{-1 \left(\frac{25}{25}\right)} = 4 \tan^{-1}(1) \] Since \(\tan^{-1}(1) = \frac{\pi}{4}\): \[ \beta = 4 \cdot \frac{\pi}{4} = \pi \] ### Step 11: Compare \(\alpha\) and \(\beta\) We found: \[ \alpha = \pi \quad \text{and} \quad \beta = \pi \] ### Conclusion Now we check the options: 1. \(\alpha < \pi\) but \(\beta > \pi\) - Incorrect 2. \(\alpha > \pi\) but \(\beta < \pi\) - Incorrect 3. \(\alpha = \beta\) - Correct 4. \(\cos(\alpha + \beta) = 0\) - Incorrect since \(\alpha + \beta = 2\pi\) and \(\cos(2\pi) = 1\) Thus, the option that does not hold true is option 4.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

If x=2cos^(-1)(1/2)+sin^(-1)(1/(sqrt(2)))+tan^(-1)(sqrt(3))\ a n d\ y=cos(1/2sin^(-1)(sin(x/2))) then which of the following statement holds good? a. y=cos((3pi)/16) b. y=cos((5pi)/16) c. x=4cos^(-1)y d. none of these

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^(-1)(2)

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |