Home
Class 12
MATHS
Which of the following pairs of function...

Which of the following pairs of function are identical?

A

`f(x) = sin(tan^(-1)x) , g (x) = x/sqrt(1+x^(2))`

B

`f(x) = sgn ( cot^(-1) x), g(x) = sec^(2) x - tan^(2) x`,where sgn x denotes signum function of x.

C

`f(x) = e ^("In" ( cos^(-1)((x^(2)-1)/(x^(2)+1)))),g(x) = cos^(-1) ((x^(2)-1)/(x^(2)+1))`

D

`f(x)= sin^(-1) ((2x)/(1+x^(2))), g(x) = 2 tan^(-1) x`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which pairs of functions are identical, we will analyze each pair step by step. ### Step 1: Analyze Option A Given: - \( f(x) = \sin(\tan^{-1}(x)) \) - \( g(x) = \frac{x}{\sqrt{1 + x^2}} \) **Solution:** 1. Let \( \tan^{-1}(x) = \alpha \). Then, \( x = \tan(\alpha) \). 2. In a right triangle, the opposite side (perpendicular) is \( x \) and the adjacent side (base) is \( 1 \). The hypotenuse can be calculated using the Pythagorean theorem: \( \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \). 3. Therefore, \( \sin(\alpha) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{x}{\sqrt{1 + x^2}} \). 4. Thus, \( f(x) = \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1 + x^2}} = g(x) \). **Conclusion:** \( f(x) \) and \( g(x) \) are identical. ### Step 2: Analyze Option B Given: - \( f(x) = \text{sgn}(\cot^{-1}(x)) \) - \( g(x) = \sec^2(x) - \tan^2(x) \) **Solution:** 1. The range of \( \cot^{-1}(x) \) is \( (0, \pi) \), which means \( \cot^{-1}(x) \) is always positive for \( x > 0 \). 2. Therefore, \( \text{sgn}(\cot^{-1}(x)) = 1 \) for \( x > 0 \). 3. We know that \( \sec^2(x) - \tan^2(x) = 1 \) (from the identity \( \sec^2(x) = 1 + \tan^2(x) \)). 4. Thus, \( f(x) = 1 \) and \( g(x) = 1 \). **Conclusion:** \( f(x) \) and \( g(x) \) are identical. ### Step 3: Analyze Option C Given: - \( f(x) = e^{\ln\left(\cos^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)\right)} \) - \( g(x) = \cos^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right) \) **Solution:** 1. By the property of logarithms, \( e^{\ln(a)} = a \). Therefore, \( f(x) = \cos^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right) \). 2. Hence, \( f(x) = g(x) \). **Conclusion:** \( f(x) \) and \( g(x) \) are identical. ### Step 4: Analyze Option D Given: - \( f(x) = \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \) - \( g(x) = 2\tan^{-1}(x) \) **Solution:** 1. We know the identity for \( 2\tan^{-1}(x) \): \[ 2\tan^{-1}(x) = \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \] is true. 2. However, the given \( f(x) \) is \( \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \) and \( g(x) \) is \( 2\tan^{-1}(x) \), which is not equal to \( \sin^{-1}\left(\frac{2x}{1 - x^2}\right) \). 3. Therefore, \( f(x) \neq g(x) \). **Conclusion:** \( f(x) \) and \( g(x) \) are not identical. ### Final Conclusion The identical pairs of functions are: - Option A: \( f(x) = g(x) \) - Option B: \( f(x) = g(x) \) - Option C: \( f(x) = g(x) \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Which of the following pair of functions are identical

Which of the following pair of functions are identical ?

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

Which of the following pairs of functions is NOT identical? (a) e^((lnx)/2) and sqrt(x) (b) tan(tanx) and cot(cotx) (c) cos^(2)x+sin^(4)x and sin^(2)x+cos^(4)x (d) (|x|)/x and sgn(x) where sgn(x) stands for signum function.

Check whether following pairs of function are identical or not? f(x)=tanx and g(x)=1/(cotx)

Check whether following pairs of function are identical or not? f(x)=sqrt(x^(2)) and g(x)=(sqrt(x))^(2)

Check whether following pairs of function are identical or not? f(x)=x and g(x)=e^(lnx)

Check whether following pairs of function are identical or not? f(x)=sqrt((1+cos2x)/2) and g(x)=cosx

Which of the following pair of species have identical shape?

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |