Home
Class 12
MATHS
The value of Sigma(n=1)^(infty) cot^(-1...

The value of ` Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1)` is also equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of the summation \( \sum_{n=1}^{\infty} \cot^{-1}(n^2 + n + 1) \), we will follow these steps: ### Step 1: Rewrite the cotangent inverse We start with the expression: \[ \sum_{n=1}^{\infty} \cot^{-1}(n^2 + n + 1) \] Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we can rewrite the summation as: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right) \] ### Step 2: Simplify the argument of the tangent inverse Next, we can factor the quadratic expression in the denominator: \[ n^2 + n + 1 = n(n + 1) + 1 \] This allows us to express the term as: \[ \tan^{-1}\left(\frac{1}{n(n + 1) + 1}\right) \] ### Step 3: Use the tangent subtraction formula We can use the formula for the difference of two tangent inverses: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab} \] By setting \( a = n + 1 \) and \( b = n \), we can express: \[ \tan^{-1}(n + 1) - \tan^{-1}(n) = \tan^{-1}\left(\frac{(n + 1) - n}{1 + n(n + 1)}\right) = \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right) \] ### Step 4: Rewrite the summation Thus, we can rewrite our summation: \[ \sum_{n=1}^{\infty} \left(\tan^{-1}(n + 1) - \tan^{-1}(n)\right) \] ### Step 5: Recognize the telescoping series This summation is a telescoping series. When we expand it, most terms will cancel: \[ (\tan^{-1}(2) - \tan^{-1}(1)) + (\tan^{-1}(3) - \tan^{-1}(2)) + (\tan^{-1}(4) - \tan^{-1}(3)) + \ldots \] The only terms that do not get canceled are: \[ \lim_{N \to \infty} \tan^{-1}(N + 1) - \tan^{-1}(1) \] ### Step 6: Evaluate the limit As \( N \) approaches infinity, \( \tan^{-1}(N + 1) \) approaches \( \frac{\pi}{2} \): \[ \lim_{N \to \infty} \tan^{-1}(N + 1) = \frac{\pi}{2} \] Thus, we have: \[ \frac{\pi}{2} - \tan^{-1}(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Conclusion Therefore, the value of the summation is: \[ \sum_{n=1}^{\infty} \cot^{-1}(n^2 + n + 1) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

The value of Sigma_(n=1)^(3) tan^(-1)((1)/(n)) is

Sigma_(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

The value of Sigma_( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) , is

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

The value of cot sum_(n=1)^(19)(cot^(-1)(1+sum_(p=1)^(n)2p)) is equal to (a) (21)/(19) (b) (19)/(21) (c) -(19)/(21) (d) -(21)/(19)

The sum of the series S=Sigma_(n=1)^(infty)(1)/(n-1)! is

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |