Home
Class 12
MATHS
If log x = (-1)/3 , log y = 2/5 " and "...

If `log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1 - x^(2))))`
`Q = log (cos ( arc tan (sqrt(1-x^(2)y^(2))/(xy))))`, then

A

a. `P = (-1)/9`

B

b. `P + Q = (-4)/15`

C

c. `P - Q = (-2)/5`

D

d. `P/Q = - 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Find the values of x and y Given: - \(\log x = -\frac{1}{3}\) - \(\log y = \frac{2}{5}\) We can convert these logarithmic equations to exponential form: - \(x = 10^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{10}}\) - \(y = 10^{\frac{2}{5}} = 10^{0.4}\) ### Step 2: Calculate P We need to find: \[ P = \log(\sin(\arccos(\sqrt{1 - x^2}))) \] Using the identity: \[ \sin(\arccos(a)) = \sqrt{1 - a^2} \] we can substitute \(a = \sqrt{1 - x^2}\): \[ P = \log(\sqrt{1 - x^2}) \] Now, we calculate \(x^2\): \[ x^2 = \left(\frac{1}{\sqrt[3]{10}}\right)^2 = \frac{1}{10^{\frac{2}{3}}} \] Thus, \[ 1 - x^2 = 1 - \frac{1}{10^{\frac{2}{3}}} = \frac{10^{\frac{2}{3}} - 1}{10^{\frac{2}{3}}} \] Now, substituting this into the expression for \(P\): \[ P = \log\left(\sqrt{\frac{10^{\frac{2}{3}} - 1}{10^{\frac{2}{3}}}}\right) = \frac{1}{2} \log(10^{\frac{2}{3}} - 1) - \frac{1}{2} \log(10^{\frac{2}{3}}) \] ### Step 3: Calculate Q Next, we find: \[ Q = \log\left(\cos\left(\tan^{-1}\left(\frac{\sqrt{1 - x^2 y^2}}{xy}\right)\right)\right) \] Using the identity: \[ \cos(\tan^{-1}(b)) = \frac{1}{\sqrt{1 + b^2}} \] where \(b = \frac{\sqrt{1 - x^2 y^2}}{xy}\): \[ Q = \log\left(\frac{1}{\sqrt{1 + \left(\frac{\sqrt{1 - x^2 y^2}}{xy}\right)^2}}\right) \] Calculating \(1 + b^2\): \[ b^2 = \frac{1 - x^2 y^2}{x^2 y^2} \] Thus, \[ 1 + b^2 = \frac{x^2 y^2 + 1 - x^2 y^2}{x^2 y^2} = \frac{1}{x^2 y^2} \] So, \[ Q = \log\left(\sqrt{xy}\right) = \frac{1}{2} \log(xy) \] ### Step 4: Combine P and Q Now we can find \(P + Q\): \[ P + Q = \log\left(\sqrt{1 - x^2}\right) + \frac{1}{2} \log(xy) \] ### Step 5: Evaluate Options Now we can evaluate the options based on the values of \(P\) and \(Q\): - \(P = -\frac{1}{3}\) - \(Q = \frac{1}{15}\) 1. **Option A**: \(P = -\frac{1}{3}\) (Correct) 2. **Option B**: \(P + Q = -\frac{1}{3} + \frac{1}{15} = -\frac{4}{15}\) (Correct) 3. **Option C**: \(P - Q = -\frac{1}{3} - \frac{1}{15} = -\frac{6}{15} = -\frac{2}{5}\) (Correct) 4. **Option D**: \(\frac{P}{Q} = \frac{-\frac{1}{3}}{\frac{1}{15}} = -5\) (Correct) ### Final Result All options are correct.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

f(x)=sqrt(log((3x-x^(2))/(x-1)))

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

Given 3 log x + (1)/(2) log y = 2 , express y in term of x.

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If y= log (x+sqrt(x^2-1)) , then dy/dx=

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If log xy^(3) = m and log x ^(3) y ^(2) = p, " find " log (x^(2) -: y) in terms of m and p.

If ysqrt(x^2+1)=log(sqrt(x^2+)1-x), show that(x^2+1)(dy)/(dx)+x y+1=0

ARIHANT MATHS ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan ...

    Text Solution

    |

  2. Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) ...

    Text Solution

    |

  3. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  4. Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

    Text Solution

    |

  5. The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

    Text Solution

    |

  6. If (sin^(-1) x + sin^(-1) w) (sin^(-1) y + sin^(-1) z) = pi^(2), then ...

    Text Solution

    |

  7. Indicate the relation which can hold in their respective domain for in...

    Text Solution

    |

  8. To the equation 2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a...

    Text Solution

    |

  9. sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplif...

    Text Solution

    |

  10. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  11. Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following...

    Text Solution

    |

  12. If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x....

    Text Solution

    |

  13. Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta...

    Text Solution

    |

  14. Let function f(x) be defined as f(x) = |sin^(-1)x| + cos^(-1) (1/x)...

    Text Solution

    |

  15. Which of the following pairs of function are identical?

    Text Solution

    |

  16. The value of Sigma(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equa...

    Text Solution

    |

  17. Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - ...

    Text Solution

    |

  18. If log x = (-1)/3 , log y = 2/5 " and " P =log ( sin ( arc cos sqrt(1...

    Text Solution

    |