Home
Class 12
MATHS
Let f be a real - valued function define...

Let f be a real - valued function defined on R ( the set of real numbers) such that `f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x)`
The value of f(10) is equal to

A

`6 pi - 20`

B

`7 pi - 20`

C

`20 - 7pi`

D

`20 - 6pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(10) \) for the function defined as: \[ f(x) = \sin^{-1}(\sin x) + \cos^{-1}(\cos x) \] we will follow these steps: ### Step 1: Identify the intervals for \( \sin^{-1}(\sin x) \) and \( \cos^{-1}(\cos x) \) The function \( \sin^{-1}(\sin x) \) has specific values depending on the interval of \( x \): - If \( x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), then \( \sin^{-1}(\sin x) = x \). - If \( x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), then \( \sin^{-1}(\sin x) = \pi - x \). - If \( x \in \left[\frac{3\pi}{2}, \frac{5\pi}{2}\right] \), then \( \sin^{-1}(\sin x) = x - 2\pi \). - If \( x \in \left[\frac{5\pi}{2}, \frac{7\pi}{2}\right] \), then \( \sin^{-1}(\sin x) = 3\pi - x \). Similarly, for \( \cos^{-1}(\cos x) \): - If \( x \in [0, \pi] \), then \( \cos^{-1}(\cos x) = x \). - If \( x \in [\pi, 2\pi] \), then \( \cos^{-1}(\cos x) = 2\pi - x \). - If \( x \in [2\pi, 3\pi] \), then \( \cos^{-1}(\cos x) = x - 2\pi \). - If \( x \in [3\pi, 4\pi] \), then \( \cos^{-1}(\cos x) = 4\pi - x \). ### Step 2: Determine the interval for \( x = 10 \) To find \( f(10) \), we need to determine which intervals \( 10 \) falls into: - The value \( 10 \) is approximately \( 3.18\pi \) (since \( \pi \approx 3.14 \)). - It lies in the interval \( \left[\frac{3\pi}{2}, \frac{5\pi}{2}\right] \) which corresponds to \( \left[4.71, 7.85\right] \). ### Step 3: Calculate \( \sin^{-1}(\sin 10) \) Since \( 10 \) is in the interval \( \left[\frac{3\pi}{2}, \frac{5\pi}{2}\right] \): \[ \sin^{-1}(\sin 10) = 3\pi - 10 \] ### Step 4: Calculate \( \cos^{-1}(\cos 10) \) Now, we check the interval for \( \cos^{-1}(\cos 10) \): - \( 10 \) is in the interval \( [3\pi, 4\pi] \): \[ \cos^{-1}(\cos 10) = 4\pi - 10 \] ### Step 5: Combine the results Now we can combine the results: \[ f(10) = \sin^{-1}(\sin 10) + \cos^{-1}(\cos 10) = (3\pi - 10) + (4\pi - 10) \] \[ f(10) = 3\pi + 4\pi - 20 = 7\pi - 20 \] Thus, the final value of \( f(10) \) is: \[ \boxed{7\pi - 20} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) Number of values of x in interval (0, 3) so that f(x) is an integer, is equal to

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The area bounded by curve y = f(x) and x- axis from pi/2 le x le pi is equal to

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let be a real valued function defined by f(x) =e +e^x , then the range of f(x) is :

The function f(x) = sin ^(-1)(cos x) is

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following statement(s) is / are TRUE ?

Let f and g be differrntiable functions on R (the set of all real numbers) such that g (1)=2=g '(1) and f'(0) =4. If h (x)= f (2xg (x)+ cos pi x-3) then h'(1) is equal to:

Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

If f(x)=(cos^2x+sin^4x)/(sin^2 x+cos^4x), for x in R, then f(2002) is equal to