Home
Class 12
MATHS
Consider a real - valued function f(x)...

Consider a real - valued function
`f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x)`
The range of f (x) is

A

`[0,sqrt3]`

B

`[1,sqrt2]`

C

`[1,sqrt6]`

D

`[sqrt3,sqrt6]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{\sin^{-1} x + 2} + \sqrt{1 - \sin^{-1} x} \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function involves the inverse sine function, \( \sin^{-1} x \), which has a domain of \( x \in [-1, 1] \). 1. **For \( \sqrt{\sin^{-1} x + 2} \)**: \[ \sin^{-1} x + 2 \geq 0 \implies \sin^{-1} x \geq -2 \] Since \( \sin^{-1} x \) ranges from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), this condition is always satisfied for \( x \in [-1, 1] \). 2. **For \( \sqrt{1 - \sin^{-1} x} \)**: \[ 1 - \sin^{-1} x \geq 0 \implies \sin^{-1} x \leq 1 \] This condition is satisfied for \( x \in [-1, 1] \) since \( \sin^{-1} x \) reaches a maximum of \( \frac{\pi}{2} \) when \( x = 1 \). Thus, the domain of \( f(x) \) is \( x \in [-1, 1] \). ### Step 2: Find Critical Points We need to find the critical points of \( f(x) \) by differentiating it. 1. Differentiate \( f(x) \): \[ f'(x) = \frac{1}{2\sqrt{\sin^{-1} x + 2}} \cdot \frac{1}{\sqrt{1 - x^2}} + \frac{1}{2\sqrt{1 - \sin^{-1} x}} \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) \] 2. Set \( f'(x) = 0 \) to find critical points: \[ \frac{1}{2\sqrt{\sin^{-1} x + 2}} - \frac{1}{2\sqrt{1 - \sin^{-1} x}} = 0 \] This leads to: \[ \sqrt{\sin^{-1} x + 2} = \sqrt{1 - \sin^{-1} x} \] Squaring both sides gives: \[ \sin^{-1} x + 2 = 1 - \sin^{-1} x \] Rearranging yields: \[ 2\sin^{-1} x = -1 \implies \sin^{-1} x = -\frac{1}{2} \] Thus, \( x = \sin\left(-\frac{1}{2}\right) = -\frac{\sqrt{3}}{2} \). ### Step 3: Evaluate \( f(x) \) at Critical Points and Endpoints 1. **At \( x = -1 \)**: \[ f(-1) = \sqrt{\sin^{-1}(-1) + 2} + \sqrt{1 - \sin^{-1}(-1)} = \sqrt{-\frac{\pi}{2} + 2} + \sqrt{1 + \frac{\pi}{2} \] This simplifies to: \[ f(-1) = \sqrt{2 - \frac{\pi}{2}} + \sqrt{1 + \frac{\pi}{2}} \] 2. **At \( x = 1 \)**: \[ f(1) = \sqrt{\sin^{-1}(1) + 2} + \sqrt{1 - \sin^{-1}(1)} = \sqrt{\frac{\pi}{2} + 2} + \sqrt{1 - \frac{\pi}{2}} \] 3. **At \( x = -\frac{\sqrt{3}}{2} \)**: \[ f\left(-\frac{\sqrt{3}}{2}\right) = \sqrt{-\frac{1}{2} + 2} + \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} = \sqrt{6} \] ### Step 4: Determine the Range Now we compare the values: - \( f(-1) \) - \( f(1) \) - \( f\left(-\frac{\sqrt{3}}{2}\right) = \sqrt{6} \) The minimum value occurs at \( f(-1) \) and the maximum at \( f(1) \). ### Conclusion The range of \( f(x) \) is: \[ \text{Range of } f(x) = [\sqrt{3}, \sqrt{6}] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

The function f(x)=sqrt(1-sqrt(1-x^2))

The domain of the function f(x)=sqrt(sin x-1) is

The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is