Home
Class 12
MATHS
Given that , tan^(-1) ((2x)/(1-x^(2)))...

Given that ,
`tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):}`
`sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):}`
`sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1`
`sin^(-1) ((4x)/(x^(2)+4)) + 2 tan^(-1)( - x/2)` is independent of `x`, then

A

`x in [-3,4]`

B

`x in [-2,2]`

C

`x in [-1,1]`

D

`x in [1,infty)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given expression and derive the conditions under which it is independent of \( x \). ### Step 1: Rewrite the given expression We start with the expression: \[ \sin^{-1}\left(\frac{4x}{x^2 + 4}\right) + 2 \tan^{-1}\left(-\frac{x}{2}\right) \] We know that \( \tan^{-1}(-x) = -\tan^{-1}(x) \), so we can rewrite the second term: \[ = \sin^{-1}\left(\frac{4x}{x^2 + 4}\right) - 2 \tan^{-1}\left(\frac{x}{2}\right) \] ### Step 2: Use the double angle formula for tangent We can use the identity for the sine of a double angle: \[ \sin(2\theta) = \frac{2\tan\theta}{1 + \tan^2\theta} \] Let \( \theta = \tan^{-1}\left(\frac{x}{2}\right) \). Then, \[ \tan\theta = \frac{x}{2} \implies \sin(2\theta) = \frac{2\cdot\frac{x}{2}}{1 + \left(\frac{x}{2}\right)^2} = \frac{x}{1 + \frac{x^2}{4}} = \frac{4x}{x^2 + 4} \] Thus, we can rewrite the expression as: \[ \sin^{-1}\left(\frac{4x}{x^2 + 4}\right) - 2 \tan^{-1}\left(\frac{x}{2}\right) = 0 \] ### Step 3: Set the expression to zero For the expression to be independent of \( x \), we need: \[ \sin^{-1}\left(\frac{4x}{x^2 + 4}\right) = 2 \tan^{-1}\left(\frac{x}{2}\right) \] This implies that the left-hand side must equal the right-hand side for all \( x \). ### Step 4: Analyze the conditions We know that: - The range of \( \sin^{-1}(y) \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). - The range of \( \tan^{-1}(y) \) is also \( (-\frac{\pi}{2}, \frac{\pi}{2}) \). ### Step 5: Find the intervals for \( x \) To ensure that the expression is defined, we need: 1. The argument of \( \sin^{-1} \) must be in the interval \([-1, 1]\): \[ -1 \leq \frac{4x}{x^2 + 4} \leq 1 \] This gives us two inequalities to solve. 2. The argument of \( \tan^{-1} \) is defined for all real numbers, so we do not have additional restrictions from that term. ### Step 6: Solve the inequalities 1. **First inequality**: \[ \frac{4x}{x^2 + 4} \leq 1 \implies 4x \leq x^2 + 4 \implies x^2 - 4x + 4 \geq 0 \implies (x-2)^2 \geq 0 \] This is true for all \( x \). 2. **Second inequality**: \[ \frac{4x}{x^2 + 4} \geq -1 \implies 4x \geq -x^2 - 4 \implies x^2 + 4x + 4 \geq 0 \implies (x + 2)^2 \geq 0 \] This is also true for all \( x \). ### Step 7: Combine the results Since both inequalities are satisfied for all \( x \), we can conclude that the expression is independent of \( x \) for: \[ |x| \leq 2 \] Thus, the final answer is: \[ x \in [-2, 2] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0 , then x = ?

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Differentiate sin^(-1)((2x)/(1+2x)) wrt to tan^(-1)x , -1

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then