Home
Class 12
MATHS
If S=underset(k=1) overset(10)sum(sin""(...

If `S=underset(k=1) overset(10)sum(sin""(2pik)/11+icos""(2pik)/11)` then

A

`S+barS=0`

B

`SbarS =1`

C

`sqrtS = +-1/sqrt2 (1+i)`

D

`S-barS =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \[ S = \sum_{k=1}^{10} \left( \sin\left(\frac{2\pi k}{11}\right) + i \cos\left(\frac{2\pi k}{11}\right) \right). \] ### Step 1: Rewrite the sum We can factor out \(i\) from the sum: \[ S = \sum_{k=1}^{10} \left( i \cos\left(\frac{2\pi k}{11}\right) + \sin\left(\frac{2\pi k}{11}\right) \right). \] ### Step 2: Use the identity for sine and cosine Recall that \( \sin(x) + i \cos(x) = e^{ix} \) can be rewritten as: \[ S = \sum_{k=1}^{10} \left( \cos\left(\frac{2\pi k}{11}\right) - i \sin\left(\frac{2\pi k}{11}\right) \right). \] This can be expressed as: \[ S = \sum_{k=1}^{10} e^{-i \frac{2\pi k}{11}}. \] ### Step 3: Recognize the geometric series The sum \( \sum_{k=1}^{n} r^k \) for a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^n}{1 - r}, \] where \(a\) is the first term and \(r\) is the common ratio. In our case, \(a = e^{-i \frac{2\pi}{11}}\) and \(r = e^{-i \frac{2\pi}{11}}\): \[ S = e^{-i \frac{2\pi}{11}} \frac{1 - (e^{-i \frac{2\pi}{11}})^{10}}{1 - e^{-i \frac{2\pi}{11}}}. \] ### Step 4: Simplify the exponent Calculating \( (e^{-i \frac{2\pi}{11}})^{10} \): \[ (e^{-i \frac{2\pi}{11}})^{10} = e^{-i \frac{20\pi}{11}} = e^{-i \frac{20\pi}{11} + 2\pi} = e^{i \frac{2\pi}{11}}. \] ### Step 5: Substitute back into the sum Now substituting back, we have: \[ S = e^{-i \frac{2\pi}{11}} \frac{1 - e^{i \frac{2\pi}{11}}}{1 - e^{-i \frac{2\pi}{11}}}. \] ### Step 6: Simplify the expression Using the identity \(1 - e^{ix} = -2i \sin\left(\frac{x}{2}\right)e^{i\frac{x}{2}}\): \[ S = e^{-i \frac{2\pi}{11}} \frac{-2i \sin\left(\frac{\pi}{11}\right)e^{i\frac{\pi}{11}}}{-2i \sin\left(\frac{\pi}{11}\right)e^{-i\frac{\pi}{11}}} = e^{-i \frac{2\pi}{11}} e^{i \frac{\pi}{11}} = e^{-i \frac{\pi}{11}}. \] ### Step 7: Final result Thus, we have: \[ S = e^{-i \frac{\pi}{11}}. \] ### Step 8: Check the options Now we check the options given in the problem. 1. \(S + S^* = 0\) is true since \(S^* = e^{i \frac{\pi}{11}}\). 2. \(S \cdot S^* = 1\) is also true since \(|S|^2 = 1\). 3. \(S - S^* = 0\) is false since \(S - S^* = -2i \sin\left(\frac{\pi}{11}\right) \neq 0\). ### Conclusion The correct options are: - Option A: True - Option B: True - Option C: False - Option D: False
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

sum_(k=1)^6 (sin,(2pik)/7 -icos, (2pik)/7)=?

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is

overset(10)underset(i=3)sum5

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -C) (objective Type Questions ( more thena one options are correct )
  1. If |3z-1|=3|z-2|, then z lies on

    Text Solution

    |

  2. If S=underset(k=1) overset(10)sum(sin""(2pik)/11+icos""(2pik)/11) then

    Text Solution

    |

  3. Let cos A + cos B + cos C = 0 and sin A + sin B + sin C = 0 then which...

    Text Solution

    |

  4. The equation whose roots are nth power of the roots of the equation, ...

    Text Solution

    |

  5. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  6. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  7. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  8. If z is a complex number satisfying z + z^-1 = 1 then z^n + z^-n , n i...

    Text Solution

    |

  9. If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

    Text Solution

    |

  10. If |z + omega|^(2) = |z|^(2)+|omega|^(2), where z and omega are co...

    Text Solution

    |

  11. Let z(1)and z(2)be two complex numbers represented by points on circle...

    Text Solution

    |

  12. Let complex number z satisfy |z - 2/z| =1 " then " |z| can take all v...

    Text Solution

    |

  13. If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a ...

    Text Solution

    |

  14. If root3(-1) = -1 , -omega, -omega^(2) , then roots of the equation ...

    Text Solution

    |

  15. If z(1)=p+iq and z(2) = u = iv are complex numbers such that |z(1)|=...

    Text Solution

    |

  16. The pressure-volume of various thermodynamic process is shown in graph...

    Text Solution

    |

  17. If z(1) ,z(2) be two complex numbers satisfying the equation |(z(1)...

    Text Solution

    |

  18. If sin alpha, cosalpha are the roots of the equation x^2 + bx + c = 0 ...

    Text Solution

    |

  19. If alpha, beta are the roots of the equation ax^(2) +2bx +c =0 and a...

    Text Solution

    |

  20. The solution set of the inequality (x+3)^(5) -(x -1)^(5) ge 244 is

    Text Solution

    |