Home
Class 12
MATHS
int[1+tanx.tan(x+alpha)]dx is equal to...

`int[1+tanx.tan(x+alpha)]dx` is equal to

A

(a) `cosalpha.ln|(sinx)/((sin(x+alpha)))|+C`

B

(b) `tanalpha.ln|(sinx)/(sin(x+alpha))|+C`

C

(c) `cotalpha.ln|(sec(x+alpha))/(secx)|+C`

D

(d) `cotalpha.ln|(cos(x+alpha))/(cosx)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (1 + \tan x \tan(x + \alpha)) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Start by rewriting the integral: \[ I = \int (1 + \tan x \tan(x + \alpha)) \, dx \] ### Step 2: Use the Identity We can use the trigonometric identity: \[ 1 + \tan a \tan b = \frac{\tan a - \tan b}{\tan a - b} \] In our case, let \( a = x + \alpha \) and \( b = x \). Thus: \[ 1 + \tan x \tan(x + \alpha) = \frac{\tan(x + \alpha) - \tan x}{\tan(x + \alpha) - x} \] ### Step 3: Substitute into the Integral Substituting this back into the integral gives: \[ I = \int \frac{\tan(x + \alpha) - \tan x}{\tan(x + \alpha) - x} \, dx \] ### Step 4: Simplify the Integral This can be simplified further. We can separate the integral into two parts: \[ I = \int \tan(x + \alpha) \, dx - \int \tan x \, dx \] ### Step 5: Integrate Each Part We know that: \[ \int \tan x \, dx = -\ln |\cos x| + C \] Thus, \[ \int \tan(x + \alpha) \, dx = -\ln |\cos(x + \alpha)| + C \] So we can write: \[ I = (-\ln |\cos(x + \alpha)|) - (-\ln |\cos x|) + C \] ### Step 6: Combine the Logarithms Using the property of logarithms: \[ \ln a - \ln b = \ln \left(\frac{a}{b}\right) \] We have: \[ I = \ln \left(\frac{|\cos x|}{|\cos(x + \alpha)|}\right) + C \] ### Step 7: Convert to Cotangent Form Since \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \), we can express the integral in terms of cotangent: \[ I = \cot \alpha \ln \left(\frac{|\sec(x + \alpha)|}{|\sec x|}\right) + C \] ### Final Result Thus, the integral evaluates to: \[ I = \cot \alpha \ln \left(\frac{\sec(x + \alpha)}{\sec x}\right) + C \] ### Conclusion This matches with option C from the given choices: \[ \text{Option C: } \cot \alpha \ln \left(\frac{\sec(x + \alpha)}{\sec x}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(sin x+cos x)/(sin(x -alpha))dx is equal to

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

int(cos4x-1)/(cotx-tanx)dx is equal to

int(cos 4x-1)/(cot x-tanx)dx is equal to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

The value of int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx is equal to

If int 1/(1-sin^4x)dx=1/(asqrtb)+tan^(- 1)(sqrt(a)tanx)+1/btanx+C then a/b is equal to

The value of int(xtanxsecx)/((tanx-x)^(2))dx is equal to