Home
Class 12
MATHS
The value of int(dx)/(cos^3x sqrtsin2x) ...

The value of `int(dx)/(cos^3x sqrtsin2x)` is equal to

A

`sqrt(2)(cossqrt(cosx)+1/2tan^(5//2)x)+C`

B

`sqrt(2)(sqrt(tanx)+1/5tan^(5//2)x)+C`

C

`sqrt(2)(sqrt(tanx)-1/5tan^(5//2)x)+C`

D

`sqrt(2)(sqrt(cosx)-1/5tan^(5//2)x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos^3 x \sqrt{\sin 2x}}, \] we will follow these steps: ### Step 1: Rewrite \(\sin 2x\) We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin x \cos x}}. \] ### Step 2: Simplify the square root We can express the square root as: \[ \sqrt{2 \sin x \cos x} = \sqrt{2} \sqrt{\sin x} \sqrt{\cos x}. \] So the integral becomes: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2} \sqrt{\sin x} \sqrt{\cos x}} = \frac{1}{\sqrt{2}} \int \frac{dx}{\cos^{3.5} x \sqrt{\sin x}}. \] ### Step 3: Rewrite the integral Now, we can rewrite the integral in terms of powers of sine and cosine: \[ I = \frac{1}{\sqrt{2}} \int \frac{dx}{\cos^{7/2} x \sin^{1/2} x}. \] ### Step 4: Multiply and divide by \(\cos^{1/2} x\) To facilitate integration, we multiply and divide by \(\cos^{1/2} x\): \[ I = \frac{1}{\sqrt{2}} \int \frac{\cos^{1/2} x}{\cos^{4} x \sin^{1/2} x} \, dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sin^{1/2} x} \cdot \frac{1}{\cos^{4} x} \, dx. \] ### Step 5: Use the substitution \(t = \tan x\) Let \(t = \tan x\), then \(dx = \sec^2 x \, dt\) and \(\sin x = \frac{t}{\sqrt{1+t^2}}\), \(\cos x = \frac{1}{\sqrt{1+t^2}}\). Substituting these into the integral gives: \[ I = \frac{1}{\sqrt{2}} \int \frac{\sec^2 x}{\left(\frac{1}{\sqrt{1+t^2}}\right)^{4} \left(\frac{t}{\sqrt{1+t^2}}\right)^{1/2}} \, dt. \] ### Step 6: Simplify the integral This simplifies to: \[ I = \frac{1}{\sqrt{2}} \int \frac{(1+t^2)^2}{t^{1/2}} \, dt. \] ### Step 7: Integrate Now we can integrate term by term. The integral can be computed using standard integration techniques. ### Step 8: Substitute back After integrating, we substitute back \(t = \tan x\) to express the result in terms of \(x\). ### Final Result The final result will be: \[ I = \sqrt{2} \left(\sqrt{\tan x} + \frac{1}{5} \tan^{5/2} x\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

int(dx)/( sin^(2)x cos^(2)x) is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

int(secx)/(sqrt(cos2x)) dx is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

The value of int(cos2x)/(cosx) dx is equal to

Write a value of int(sinx)/(cos^3x)\ dx

int(dx)/(sqrt(cos^(3)xcos(x-alpha))) is equal to