Home
Class 12
MATHS
Antiderivative of int sin^2x/(1+ sin^2x...

Antiderivative of `int sin^2x/(1+ sin^2x)` w.r.t. `x` is

A

`x-sqrt(5)/(2)"arc " tan(sqrt(2)tanx)+C`

B

`x-1/2"arc "tan(tanx)/(sqrt(2))+C`

C

`x-sqrt(2)"arc "tan(sqrt(tanx))+C`

D

`x-sqrt(2)"arc "tan(tanx)(sqrt(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To find the antiderivative of the function \( \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx \] We can add and subtract 1 in the numerator: \[ I = \int \left( \frac{\sin^2 x + 1 - 1}{1 + \sin^2 x} \right) \, dx = \int \left( \frac{1 + \sin^2 x}{1 + \sin^2 x} - \frac{1}{1 + \sin^2 x} \right) \, dx \] This simplifies to: \[ I = \int 1 \, dx - \int \frac{1}{1 + \sin^2 x} \, dx \] ### Step 2: Integrate the First Term The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 3: Simplify the Second Integral Now we need to focus on the second integral: \[ \int \frac{1}{1 + \sin^2 x} \, dx \] We can use the identity \( 1 + \sin^2 x = \sec^2 x + \tan^2 x \) to rewrite the integral: \[ \int \frac{1}{1 + \sin^2 x} \, dx = \int \frac{\sec^2 x}{\sec^2 x + \tan^2 x} \, dx \] ### Step 4: Use a Substitution Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). The integral becomes: \[ \int \frac{1}{1 + \frac{t^2}{1}} \cdot \frac{1}{\sec^2 x} \, dt = \int \frac{1}{1 + t^2} \cdot \frac{1}{\sec^2 x} \cdot \sec^2 x \, dt = \int \frac{1}{1 + t^2} \, dt \] ### Step 5: Integrate the Second Term The integral \( \int \frac{1}{1 + t^2} \, dt \) is a standard integral: \[ \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) + C \] Substituting back \( t = \tan x \): \[ \int \frac{1}{1 + \sin^2 x} \, dx = \tan^{-1}(\tan x) + C = x + C \] ### Step 6: Combine the Results Now we can combine the results from Steps 2 and 5: \[ I = x - \left( x + C \right) = x - x - C = -C \] ### Final Result Thus, the antiderivative is: \[ I = x - \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2} \tan x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int (sin2x) dx/(1+sin^4x)

int sin x sin2x sin3x

Find derivative of sin(tan^(-1)e^(-x)) w.r.t. to x

Differentiation of sin(x^2) w.r.t. x is

Find the derivative of (sinx)^x+sin^(-1)sqrt(x) w.r.t. x

The derivative of sin^(-1)((x)/(sqrt(1+x^(2)))) w.r.t .x is

Evaluate: int(1+sin2x)/(x+sin^2x)dx

The antiderivative of (2^x)/(sqrt(1-4^x)) w.r.t x is (A) (log)_2edotsin^(-1)(2^x)+k (B) ""sin^(-1)(2^x)+k (C) ""cos^(-1)(2^x)dot1/((log)_e2)+k (D) none of these

Find the derivative of tan^(-1)(2x)/(1-x^2) w.r.t sin^(-1)(2x)/(1+x^2)

int sin x .sin2x.sin3x dx