Home
Class 12
MATHS
int (1)/(1-cot x)...

` int (1)/(1-cot x)`

A

`1/2log|sinx-cosx|+1/2x+C`

B

`1/2log|sinx-cosx|+1/2x+C`

C

`1/2log|sinx+cosx|-1/2x+C`

D

`1/2log|sinx-cosx|-1/2x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{1 - \cot x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \cot x \) in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, we can express the integral as: \[ I = \int \frac{1}{1 - \frac{\cos x}{\sin x}} \, dx \] ### Step 2: Simplify the integrand Next, we simplify the expression in the integrand: \[ I = \int \frac{1}{\frac{\sin x - \cos x}{\sin x}} \, dx = \int \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 3: Split the integral Now, we can multiply and divide the integrand by 2: \[ I = \frac{1}{2} \int \frac{2 \sin x}{\sin x - \cos x} \, dx \] We can express \( 2 \sin x \) as \( \sin x + \sin x \): \[ I = \frac{1}{2} \int \left( \frac{\sin x - \cos x}{\sin x - \cos x} + \frac{\sin x + \cos x}{\sin x - \cos x} \right) \, dx \] ### Step 4: Separate the integrals This allows us to separate the integral: \[ I = \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \frac{\sin x + \cos x}{\sin x - \cos x} \, dx \] ### Step 5: Evaluate the first integral The first integral is straightforward: \[ \frac{1}{2} \int 1 \, dx = \frac{1}{2} x \] ### Step 6: Substitute for the second integral For the second integral, we will use the substitution: Let \( t = \sin x - \cos x \). Then, differentiating gives: \[ dt = (\cos x + \sin x) \, dx \] Thus, we can rewrite the second integral: \[ \int \frac{\sin x + \cos x}{\sin x - \cos x} \, dx = \int \frac{1}{t} \, dt \] ### Step 7: Evaluate the second integral The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \log |t| + C = \log |\sin x - \cos x| + C \] ### Step 8: Combine the results Combining both parts, we have: \[ I = \frac{1}{2} x + \frac{1}{2} \log |\sin x - \cos x| + C \] ### Final Result Thus, the final answer is: \[ I = \frac{1}{2} x + \frac{1}{2} \log |\sin x - \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

inte^(x) ( 1- cot x + cot^(2) x) dx is eqal to

int(cos 4x-1)/(cot x-tanx)dx is equal to

Evaluate: int1/(4+3\ cot\ x)\ dx

Prove that : int_(0)^(pi//2) (dx)/(1+cot x)=(pi)/(4)

Draw the graph of y=cot^(-1)(cot x)

The value of int_(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

int(1)/(cos x . cot x ) dx

Evaluate int(dx)/(cot^(2)x-1)

Evaluate the following inte^x(1-cot x+cot^2x)dx

(i) int sqrt(1+ sin .(x)/(2)dx) (ii) int (1+cos 4x)/(cot x- tan x)dx