Home
Class 12
MATHS
y=(log(e)x)^(sinx)...

`y=(log_(e)x)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\log_e x)^{\sin x} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression. \[ \log y = \log((\log_e x)^{\sin x}) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \log(a^b) = b \cdot \log a \), we can rewrite the equation: \[ \log y = \sin x \cdot \log(\log_e x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(\sin x \cdot \log(\log_e x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(\sin x) \cdot \log(\log_e x) + \sin x \cdot \frac{d}{dx}(\log(\log_e x)) \] ### Step 4: Differentiate the components Now we differentiate each component: 1. The derivative of \( \sin x \) is \( \cos x \). 2. For \( \log(\log_e x) \), we use the chain rule: \[ \frac{d}{dx}(\log(\log_e x)) = \frac{1}{\log_e x} \cdot \frac{1}{x} = \frac{1}{x \log_e x} \] ### Step 5: Substitute back into the equation Substituting these derivatives back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \log(\log_e x) + \sin x \cdot \frac{1}{x \log_e x} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \cos x \cdot \log(\log_e x) + \frac{\sin x}{x \log_e x} \right) \] ### Step 7: Substitute \( y \) back Recall that \( y = (\log_e x)^{\sin x} \), we substitute this back in: \[ \frac{dy}{dx} = (\log_e x)^{\sin x} \left( \cos x \cdot \log(\log_e x) + \frac{\sin x}{x \log_e x} \right) \] ### Final Answer Thus, the derivative of \( y = (\log_e x)^{\sin x} \) is: \[ \frac{dy}{dx} = (\log_e x)^{\sin x} \left( \cos x \cdot \log(\log_e x) + \frac{\sin x}{x \log_e x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of y=(log_(e)x)^(2)

Draw the graph of y = log_(e) (sin x).

If y=(log_ex)/(x)+e^(x)sinx+log_(5)x then find (dy)/(dx) .

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

Draw the graph of y=log_(e)(x^(3)-x)

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

Draw the graph of y=1/(log_(e)x)

underset(xto(pi)/(2))(lim)([(x)/(2)])/(log_(e)(sinx))([.] denotes greatest integer function)

Find the domain and range of following functions (i) f(x)=log_(e)(sinx) (ii) f(x)=log_(3)(5-4x-x^(2))

Plot the following functions. y=(log_(e)x)+1