Home
Class 12
MATHS
y=x^(tanx)...

`y=x^(tanx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\tan x} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the differentiation process. \[ \ln y = \ln(x^{\tan x}) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can rewrite the equation: \[ \ln y = \tan x \cdot \ln x \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(\tan x \cdot \ln x) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\tan x) \cdot \ln x + \tan x \cdot \frac{d}{dx}(\ln x) \] ### Step 4: Differentiate the right side Now we differentiate the right side. The derivative of \( \tan x \) is \( \sec^2 x \) and the derivative of \( \ln x \) is \( \frac{1}{x} \): \[ \frac{1}{y} \frac{dy}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now we multiply both sides by \( y \) to solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) \] ### Step 6: Substitute \( y \) back Since we have \( y = x^{\tan x} \), we substitute back: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) \] ### Final Result Thus, the derivative of \( y = x^{\tan x} \) is: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=e^(tanx) , then (cos^2x)y2-(1+sin2x)y1=0

Find f'(x) if f(x) = (tanx)^(tanx)

Find (d^2y)/(dx^2) , if y=x^3+tanx .

Find dy/dx if x+y =( tanx)^2

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

If y=(tanx)/(tan3x), then

lim_(xrarr0) (tanx-x)/(x^(2)tanx) =?

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)