Home
Class 12
MATHS
y=(tanx)^(logx)+(cosx)^(sinx), find dy/d...

`y=(tanx)^(logx)+(cosx)^(sinx)`, find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = (\tan x)^{\log x} + (\cos x)^{\sin x}, \] we will differentiate each term separately. ### Step 1: Differentiate the first term \( u = (\tan x)^{\log x} \) 1. **Take the logarithm of both sides**: \[ \log u = \log((\tan x)^{\log x}) = \log x \cdot \log(\tan x). \] 2. **Differentiate both sides using implicit differentiation**: \[ \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(\log x \cdot \log(\tan x)). \] 3. **Apply the product rule**: \[ \frac{d}{dx}(\log x \cdot \log(\tan x)) = \log(\tan x) \cdot \frac{1}{x} + \log x \cdot \frac{1}{\tan x} \cdot \sec^2 x. \] 4. **Multiply both sides by \( u \)** to solve for \( \frac{du}{dx} \): \[ \frac{du}{dx} = u \left( \frac{\log(\tan x)}{x} + \frac{\log x \cdot \sec^2 x}{\tan x} \right). \] 5. **Substitute back \( u = (\tan x)^{\log x} \)**: \[ \frac{du}{dx} = (\tan x)^{\log x} \left( \frac{\log(\tan x)}{x} + \frac{\log x \cdot \sec^2 x}{\tan x} \right). \] ### Step 2: Differentiate the second term \( v = (\cos x)^{\sin x} \) 1. **Take the logarithm of both sides**: \[ \log v = \sin x \cdot \log(\cos x). \] 2. **Differentiate both sides using implicit differentiation**: \[ \frac{1}{v} \frac{dv}{dx} = \cos x \cdot \log(\cos x) + \sin x \cdot \frac{-\sin x}{\cos x}. \] 3. **Multiply both sides by \( v \)** to solve for \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = v \left( \log(\cos x) \cdot \cos x - \sin^2 x \cdot \frac{1}{\cos x} \right). \] 4. **Substitute back \( v = (\cos x)^{\sin x} \)**: \[ \frac{dv}{dx} = (\cos x)^{\sin x} \left( \log(\cos x) \cdot \cos x - \frac{\sin^2 x}{\cos x} \right). \] ### Step 3: Combine the derivatives Now that we have both derivatives, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}. \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\tan x)^{\log x} \left( \frac{\log(\tan x)}{x} + \frac{\log x \cdot \sec^2 x}{\tan x} \right) + (\cos x)^{\sin x} \left( \log(\cos x) \cdot \cos x - \frac{\sin^2 x}{\cos x} \right). \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\tan x)^{\log x} \left( \frac{\log(\tan x)}{x} + \frac{\log x \cdot \sec^2 x}{\tan x} \right) + (\cos x)^{\sin x} \left( \log(\cos x) \cdot \cos x - \frac{\sin^2 x}{\cos x} \right). \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=(tanx)^(logx)+cos^2(pi/4) , find (dy)/(dx)

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If (cosx)^y=(siny)^x , find (dy)/(dx) .

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is

If (cosx)^y=(cosy)^x , find (dy)/(dx)

If (cosx)^y=(cosy)^x find (dy)/(dx) .

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=((2-3cosx)/(sinx)), find (dy)/(dx)" "at x=pi/4

If y=x^(-1//2)+log_(5)x+(sinx)/(cosx)+2^(x), then find (dy)/(dx)