Home
Class 12
MATHS
y=x^(sinx)+a^(sinx)...

`y=x^(sinx)+a^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\sin x} + a^{\sin x} \), we will differentiate each term separately and then combine the results. Here’s the step-by-step solution: ### Step 1: Differentiate the first term \( x^{\sin x} \) We will use the logarithmic differentiation method for the term \( x^{\sin x} \). 1. Let \( t = x^{\sin x} \). 2. Taking the natural logarithm of both sides, we have: \[ \ln t = \sin x \cdot \ln x \] 3. Differentiate both sides with respect to \( x \): \[ \frac{1}{t} \frac{dt}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] 4. Rearranging gives: \[ \frac{dt}{dx} = t \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] 5. Substituting back \( t = x^{\sin x} \): \[ \frac{d}{dx}(x^{\sin x}) = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] ### Step 2: Differentiate the second term \( a^{\sin x} \) For the term \( a^{\sin x} \), we will use the chain rule: 1. The derivative of \( a^{\sin x} \) is given by: \[ \frac{d}{dx}(a^{\sin x}) = a^{\sin x} \cdot \ln a \cdot \cos x \] ### Step 3: Combine the derivatives Now, we combine the derivatives from both terms: \[ \frac{dy}{dx} = \frac{d}{dx}(x^{\sin x}) + \frac{d}{dx}(a^{\sin x}) \] Substituting the derivatives we found: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + a^{\sin x} \cdot \ln a \cdot \cos x \] ### Final Answer Thus, the derivative of the function \( y = x^{\sin x} + a^{\sin x} \) is: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + a^{\sin x} \cdot \ln a \cdot \cos x \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if, y=x^(sinx)+(sinx)^x

If y=(sinx)^((sinx)^((sinx)^(...^infty))) , prove that (dy)/(dx)=(y^2cosx)/((1-ylogsinx)

If y=sinx^(sinx^(sinx^dotoo)) , prove that (dy)/(dx)=(y^2cotx)/((1-ylogsinx))

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

Differentiate x^(x)+(sinx)^(sinx) with respect to 'x'.

y=sinx

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

Differentiate the following with respect to x : x^(sinx)+(sinx)^(cosx)

y=(log_(e)x)^(sinx)

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is