Home
Class 12
MATHS
y=sinxcdotsin2xcdotsin4xcdotsin8x...

`y=sinxcdotsin2xcdotsin4xcdotsin8x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin x \cdot \sin 2x \cdot \sin 4x \cdot \sin 8x \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides: \[ \log y = \log(\sin x \cdot \sin 2x \cdot \sin 4x \cdot \sin 8x) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log(m \cdot n) = \log m + \log n \), we can expand the right-hand side: \[ \log y = \log(\sin x) + \log(\sin 2x) + \log(\sin 4x) + \log(\sin 8x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log y) = \frac{d}{dx}(\log(\sin x)) + \frac{d}{dx}(\log(\sin 2x)) + \frac{d}{dx}(\log(\sin 4x)) + \frac{d}{dx}(\log(\sin 8x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x + \frac{1}{\sin 2x} \cdot 2 \cos 2x + \frac{1}{\sin 4x} \cdot 4 \cos 4x + \frac{1}{\sin 8x} \cdot 8 \cos 8x \] ### Step 4: Simplify the right side This gives us: \[ \frac{dy}{dx} = y \left( \frac{\cos x}{\sin x} + \frac{2 \cos 2x}{\sin 2x} + \frac{4 \cos 4x}{\sin 4x} + \frac{8 \cos 8x}{\sin 8x} \right) \] ### Step 5: Substitute back for \( y \) Since \( y = \sin x \cdot \sin 2x \cdot \sin 4x \cdot \sin 8x \), we can substitute back: \[ \frac{dy}{dx} = \sin x \cdot \sin 2x \cdot \sin 4x \cdot \sin 8x \left( \cot x + 2 \cot 2x + 4 \cot 4x + 8 \cot 8x \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \sin x \cdot \sin 2x \cdot \sin 4x \cdot \sin 8x \left( \cot x + 2 \cot 2x + 4 \cot 4x + 8 \cot 8x \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The line 3x -4y = k will cut the circle x^(2) + y^(2) -4x -8y -5 = 0 at distinct points if

Three sides of a triangle are represented by lines whose combined equation is (2x+y-4) (xy-4x-2y+8) = 0 , then the equation of its circumcircle will be : (A) x^2 + y^2 - 2x - 4y = 0 (B) x^2 + y^2 + 2x + 4y = 0 (C) x^2 + y^2 - 2x + 4y = 0 (D) x^2 + y^2 + 2x - 4y = 0

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is (a) x^2+y^2+4x+4y-8=0 (b) x^2+y^2-3x+4y+8=0 (c) x^2+y^2+x+y=0 (d) x^2+y^2-3x-3y-8=0

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is x^2+y^2+4x+4y-8=0 x^2+y^2-3x+4y+8=0 x^2+y^2+x+y=0 x^2+y^2-3x-3y-8=0

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is x^2+y^2+4x+4y-8=0 x^2+y^2-3x+4y+8=0 x^2+y^2+x+y=0 x^2+y^2-3x-3y-8=0

The sum of the ordinates of point of contacts of the common tangent to the parabolas y = x^2 + 4x +8 and y=x^2+8x +4 is

If the circumference of the circle x^2+y^2+8x+8y-b=0 is bisected by the circle x^2+y^2=4 and the line 2x+y=1 and having minimum possible radius is 5x^2+5y^2+18 x+6y-5=0 5x^2+5y^2+9x+8y-15=0 5x^2+5y^2+4x+9y-5=0 5x^2+5y^2-4x-2y-18=0

The locus of the centre of all circles passing through (2, 4) and cutting x^2 + y^2 = 1 orthogonally is : (A) 4x+8y = 11 (B) 4x+8y=21 (C) 8x+4y=21 (D) 4x-8y=21

The point of tangency of the circles x^2+ y^2 - 2x-4y = 0 and x^2 + y^2-8y -4 = 0 , is

The point of tangency of the circles x^2+ y^2 - 2x-4y = 0 and x^2 + y^2-8y -4 = 0 , is