Home
Class 12
MATHS
y=sqrt((x^(2)+x+1)/(x^(2)-x+1)) find dy/...

`y=sqrt((x^(2)+x+1)/(x^(2)-x+1))` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \), we can follow these steps: ### Step 1: Rewrite the function We start by rewriting the function in a more manageable form: \[ y = \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)^{\frac{1}{2}} \] ### Step 2: Take the logarithm of both sides Taking the natural logarithm of both sides gives us: \[ \log y = \frac{1}{2} \log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) \] ### Step 3: Apply logarithmic properties Using the properties of logarithms, we can expand the right-hand side: \[ \log y = \frac{1}{2} \left( \log(x^2 + x + 1) - \log(x^2 - x + 1) \right) \] ### Step 4: Differentiate both sides Now, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x^2 + x + 1} \cdot (2x + 1) - \frac{1}{x^2 - x + 1} \cdot (2x - 1) \right) \] ### Step 5: Simplify the right-hand side This expression simplifies to: \[ \frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{2x + 1}{x^2 + x + 1} - \frac{2x - 1}{x^2 - x + 1} \right) \] ### Step 6: Find a common denominator To combine the fractions, we find a common denominator: \[ \frac{dy}{dx} = y \cdot \frac{1}{2} \cdot \frac{(2x + 1)(x^2 - x + 1) - (2x - 1)(x^2 + x + 1)}{(x^2 + x + 1)(x^2 - x + 1)} \] ### Step 7: Expand and simplify the numerator Expanding the numerator: \[ (2x + 1)(x^2 - x + 1) = 2x^3 - 2x^2 + 2x + x^2 - x + 1 = 2x^3 - x^2 + x + 1 \] \[ (2x - 1)(x^2 + x + 1) = 2x^3 + 2x^2 + 2x - x^2 - x - 1 = 2x^3 + x^2 + x - 1 \] Subtracting these gives: \[ (2x^3 - x^2 + x + 1) - (2x^3 + x^2 + x - 1) = -2x^2 + 2 \] ### Step 8: Substitute back for \( y \) Now substituting back for \( y \): \[ \frac{dy}{dx} = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \cdot \frac{-2x^2 + 2}{2(x^2 + x + 1)(x^2 - x + 1)} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \cdot \frac{1 - x^2}{x^4 + x^2 + 1} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

y=(x^2+1/x^2)^3 find dy/dx

If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy)/(dx)

If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy)/(dx)

y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^(x)) Find dy/dx

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

If y=cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) ,x is [-1/2,0] , find (dy)/(dx)

if y=sin^(-1)((5x+12sqrt(1-x^(2)))/(13)) then find (dy)/(dx)