Home
Class 12
MATHS
y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^...

`y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^(x))` Find dy/dx

Text Solution

Verified by Experts

The correct Answer is:
`((x+1)^(2)sqrt(x-1))/((x+3)^(3)cdote^(x))[2/(x+1)+1/(2(x-1))-3/(x+3)-1]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=sqrt((x^(2)+x+1)/(x^(2)-x+1)) find dy/dx

If y=(x+1)(x+2)^2(x+3)^3 , Find dy/dx

y=x(x+1)^3 find dy/dx

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

y=x+x^(2)+(1)/(x)+(1)/(x^(3)) . Find (dy)/(dx)

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

If y=(sqrt(1-x^2)(2x-3)^(1//2))/((x^2+2)^(2//3)) , find (dy)/(dx) .

y=(x^2+1/x^2)^3 find dy/dx

Given that y= (3x -1)^(2) + (2x -1)^(3) , find (dy)/( dx) and the points on the curve for which (dy)/(dx)=0

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)