Home
Class 12
MATHS
y=tanxtan2xtan3xtan4x...

`y=tanxtan2xtan3xtan4x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan x \tan 2x \tan 3x \tan 4x \) with respect to \( x \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the differentiation process: \[ \log y = \log(\tan x \tan 2x \tan 3x \tan 4x) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log(mn) = \log m + \log n \), we can rewrite the equation as: \[ \log y = \log(\tan x) + \log(\tan 2x) + \log(\tan 3x) + \log(\tan 4x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}[\log(\tan x)] + \frac{d}{dx}[\log(\tan 2x)] + \frac{d}{dx}[\log(\tan 3x)] + \frac{d}{dx}[\log(\tan 4x)] \] ### Step 4: Apply the chain rule Using the chain rule, we know that: \[ \frac{d}{dx}[\log(\tan kx)] = \frac{1}{\tan kx} \cdot \sec^2(kx) \cdot k \] for \( k = 1, 2, 3, 4 \). Thus, we can write: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{\tan x} \sec^2 x + \frac{1}{\tan 2x} \cdot 2 \sec^2(2x) + \frac{1}{\tan 3x} \cdot 3 \sec^2(3x) + \frac{1}{\tan 4x} \cdot 4 \sec^2(4x) \] ### Step 5: Multiply through by \( y \) Now, we multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \] ### Step 6: Substitute back for \( y \) Since \( y = \tan x \tan 2x \tan 3x \tan 4x \), we can substitute back: \[ \frac{dy}{dx} = \tan x \tan 2x \tan 3x \tan 4x \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \tan x \tan 2x \tan 3x \tan 4x \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

inttanxtan2xtan3xdx

Solve tanx+tan2x+tan3x=tanxtan2xtan3x ,x in [0,pi]

If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is ___________

If tanx+tan2x+tan3x=tanxtan2xtan3x then value of |sin3x+cos3x| is ___________

STATEMENT-1 : int tan5xtan3xtan2xdx is equal to (log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c and STATEMENT-2: tan5x-tan3x-tan2x=tan5xtan3xtan2x .

inttan2xtan5xtan7xdx

Evaluate: inttan2xtan3xtan5xdx

Find the sum : tanx.tan2x+tan2xtan3x+….+tannx. tan(n+1)x

Evaluate: inttanxtan2xtan3x\ dx

Evaluate: (i) int1/(sqrt(x)(sqrt(x)+1))\ dx (ii) inttan2xtan3xtan5x\ dx