Home
Class 12
MATHS
find diferentiation of (i) x^(y)cdoty^(x...

find diferentiation of (i) `x^(y)cdoty^(x)=1` (ii) `y=e^(x^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differentiation of the given equations, we will solve each part step by step. ### Part (i): Differentiate \( x^y \cdot y^x = 1 \) 1. **Take the logarithm of both sides:** \[ \log(x^y \cdot y^x) = \log(1) \] Since \(\log(1) = 0\), we have: \[ \log(x^y) + \log(y^x) = 0 \] 2. **Apply the logarithmic properties:** Using the property \(\log(a^b) = b \log(a)\): \[ y \log(x) + x \log(y) = 0 \] 3. **Differentiate both sides with respect to \(x\):** \[ \frac{d}{dx}(y \log(x)) + \frac{d}{dx}(x \log(y)) = 0 \] Using the product rule on both terms: \[ \frac{dy}{dx} \log(x) + y \cdot \frac{1}{x} + \log(y) + x \cdot \frac{dy}{dx} \cdot \frac{1}{y} = 0 \] 4. **Rearranging the equation:** Grouping the terms involving \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left( \log(x) + \frac{x}{y} \right) = -\left( \frac{y}{x} + \log(y) \right) \] 5. **Solve for \(\frac{dy}{dx}\):** \[ \frac{dy}{dx} = -\frac{\frac{y}{x} + \log(y)}{\log(x) + \frac{x}{y}} \] ### Part (ii): Differentiate \( y = e^{x^x} \) 1. **Take the logarithm of both sides:** \[ \log(y) = \log(e^{x^x}) \] Simplifying gives: \[ \log(y) = x^x \] 2. **Differentiate both sides with respect to \(x\):** Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(x^x) \] To differentiate \(x^x\), use the property: \[ x^x = e^{x \log(x)} \] Thus: \[ \frac{d}{dx}(x^x) = e^{x \log(x)} \left( \log(x) + 1 \right) = x^x (\log(x) + 1) \] 3. **Substituting back:** \[ \frac{1}{y} \frac{dy}{dx} = x^x (\log(x) + 1) \] 4. **Solve for \(\frac{dy}{dx}\):** \[ \frac{dy}{dx} = y \cdot x^x (\log(x) + 1) \] Since \(y = e^{x^x}\), we can write: \[ \frac{dy}{dx} = e^{x^x} \cdot x^x (\log(x) + 1) \] ### Summary of Results: 1. For \( x^y \cdot y^x = 1 \): \[ \frac{dy}{dx} = -\frac{\frac{y}{x} + \log(y)}{\log(x) + \frac{x}{y}} \] 2. For \( y = e^{x^x} \): \[ \frac{dy}{dx} = e^{x^x} \cdot x^x (\log(x) + 1) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find differentiation of y w.r.t x. (i) y=(sin x)/x , (ii) y=(4x^(3))/e^(x)

Find differentiation of y w.r.t x. (i) y=(sin x)/x , (ii) y=(4x^(3))/e^(x)

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

Find first derivation of y w.r.t. x. (i) y=x^(2) sin x , (ii) y=4(e^(x))cos x

Differentiate w.r.t x (i) y=e^(x)sin^(3)xcos^(4)x (ii) y=x*e^(xsinx)

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Draw the graphs of (i) y=x^(2)(x-1)|x-2| (ii) y=x^(3)(x-1)|x-2|

x-y relation is given by y=x^(n) calculate the value of n in the following :- (i) y=(x^(2))/(x^(2//3)) (ii) y=(x^(3//2))/(x^(1)) (iii) y=(x^(1//2))/(x^(1//2)) (iv) y=(x^(3//2))/(sqrt(x))

Find first derivative of y w.r.t. x. (i) y=e^(-x) , (ii) y=4 sin 3x , (iii) y=4e^(x^(2)-2x)

The solution of the differential equation (dy)/(dx)+1=e^(x+y), is a. (x+y)e^(x+y)=0 b. (x+C)e^(x+y)=0 c. (x-C)e^(x+y)=1 d. (x+C)e^(x+y)+1=0