Home
Class 12
MATHS
Differentiate w.r.t x (i) y=e^(x)sin^(3)...

Differentiate w.r.t x
(i) `y=e^(x)sin^(3)xcos^(4)x` (ii) `y=x*e^(xsinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given functions with respect to \( x \), we will apply the product rule and chain rule as necessary. ### Part (i): Differentiate \( y = e^{x} \sin^{3} x \cos^{4} x \) 1. **Identify the components**: We can see that \( y \) is a product of three functions: - \( f(x) = e^{x} \) - \( g(x) = \sin^{3} x \) - \( h(x) = \cos^{4} x \) 2. **Apply the product rule**: The product rule states that if \( y = u \cdot v \cdot w \), then: \[ \frac{dy}{dx} = u'vw + uv'w + uvw' \] Here, \( u = e^{x} \), \( v = \sin^{3} x \), and \( w = \cos^{4} x \). 3. **Differentiate each function**: - \( u' = \frac{d}{dx}(e^{x}) = e^{x} \) - For \( v = \sin^{3} x \): \[ v' = 3 \sin^{2} x \cos x \quad \text{(using chain rule)} \] - For \( w = \cos^{4} x \): \[ w' = -4 \cos^{3} x \sin x \quad \text{(using chain rule)} \] 4. **Substitute into the product rule**: \[ \frac{dy}{dx} = e^{x} \sin^{3} x \cdot \cos^{4} x + e^{x} \cdot 3 \sin^{2} x \cos x \cdot \cos^{4} x + e^{x} \sin^{3} x \cdot (-4 \cos^{3} x \sin x) \] 5. **Simplify the expression**: \[ \frac{dy}{dx} = e^{x} \sin^{3} x \cos^{4} x + 3 e^{x} \sin^{2} x \cos^{5} x - 4 e^{x} \sin^{4} x \cos^{3} x \] 6. **Factor out common terms**: \[ \frac{dy}{dx} = e^{x} \sin^{2} x \cos^{3} x \left( \sin x \cos x + 3 \cos^{2} x - 4 \sin^{2} x \right) \] ### Part (ii): Differentiate \( y = x e^{x \sin x} \) 1. **Identify the components**: Here, we can see \( y \) is a product of: - \( f(x) = x \) - \( g(x) = e^{x \sin x} \) 2. **Apply the product rule**: \[ \frac{dy}{dx} = f' g + f g' \] 3. **Differentiate each function**: - \( f' = \frac{d}{dx}(x) = 1 \) - For \( g = e^{x \sin x} \): - Using the chain rule: \[ g' = e^{x \sin x} \cdot \frac{d}{dx}(x \sin x) \] - Now differentiate \( x \sin x \) using the product rule: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] - Thus, \[ g' = e^{x \sin x} (\sin x + x \cos x) \] 4. **Substitute into the product rule**: \[ \frac{dy}{dx} = 1 \cdot e^{x \sin x} + x \cdot e^{x \sin x} (\sin x + x \cos x) \] 5. **Factor out common terms**: \[ \frac{dy}{dx} = e^{x \sin x} \left( 1 + x (\sin x + x \cos x) \right) \] ### Final Answers: 1. \( \frac{dy}{dx} = e^{x} \sin^{2} x \cos^{3} x \left( \sin x \cos x + 3 \cos^{2} x - 4 \sin^{2} x \right) \) 2. \( \frac{dy}{dx} = e^{x \sin x} \left( 1 + x (\sin x + x \cos x) \right) \)
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x , y = x^(sinx)

Differentiate w.r.t x y = 8x^(8)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x e^(x) log (sin 2x)

Differentiate w.r.t x (x sin x)^(3)

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)