Home
Class 12
MATHS
Find the value of int(0)^(4)[x]dx, where...

Find the value of `int_(0)^(4)[x]dx`, where `[.]` represents the gretest integer function.

Text Solution

Verified by Experts

The correct Answer is:
6

Graph of `y=[x]` for `0ltxlt4` is as shown in the following figure.

From the graph `int_(0)^(4)[x]dx=0` (for `0ltxlt1)`
`+(1xx1)` (for `1ltxlt2`)
`+(1xx2)` (for `2ltxlt3`)
`+(1xx3)` (for `3ltxlt4`)
`=0+1+2+3`
`=6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Find the value of int_0^1x(1-x)dx

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Draw the graph of |y|=[x] , where [.] represents the greatest integer function.

Let f(x)=x^(3)-9x^(2)+24x+c=0 have three real and distinct roots alpha, beta and lambda . (i) Find the possible values of c. (ii) If [alpha]+[beta]+[lambda]=8 , then find the values of c, where [*] represents the greatest integer function. (ii) If [alpha]+[beta]+[lambda]=7 , then find the values of c, where [*] represents the greatest integer functions

Suppose that f is an even, periodic function with period 2 , and f(x)=x for all x in the interval [0,1] . The values of [10f(3. 14)] is (where [.] represents the greatest integer function) ______

CENGAGE PUBLICATION-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate the following integrals using limit of sum. int(a)^(b)cos x...

    Text Solution

    |

  2. Evaluate the following integrals . int(a)^(b)x^(3)dx

    Text Solution

    |

  3. Find the value of int(0)^(4)[x]dx, where [.] represents the gretest in...

    Text Solution

    |

  4. If f(x)={1-|x|, |x|lt=1 and 0 , |x|>1 and g(x)=f(x-1)+f(x+1), find ...

    Text Solution

    |

  5. Consider the integral int0^(2pi)(dx)/(5-2cosx) making the substitution...

    Text Solution

    |

  6. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  7. Evaluate: int1^oo (e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  8. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  9. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  10. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  11. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  12. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  13. Prove that int0^(102)(x-1)(x-2)..(x-100)xx(1/(x-1)+1/(x-2)+.... .+ 1/...

    Text Solution

    |

  14. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  15. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  16. Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7....

    Text Solution

    |

  17. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))+ .......

    Text Solution

    |

  18. Evaluate: underset(nrarrinfty)lim[(1/n^2sec^2(1/(n^2))+2/n^2sec^2((4)/...

    Text Solution

    |

  19. Evaluate ("lim")(n rarr oo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  20. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |