Home
Class 12
MATHS
Consider the integral int0^(2pi)(dx)/(5-...

Consider the integral `int_0^(2pi)(dx)/(5-2cosx)` making the substitution `tan1/x=t ,` we have `I=int_0^(2pi)(dx)/(5-2cosx)` `=int_0^0(2dt)/((1+t^2)[(5-2(1-t^2))/((1+t^2))])=0` The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

Text Solution

Verified by Experts

The correct Answer is:
2

Here the mistake lies in the substitution `"tan"1/2x=t`, because `"tan"1/2x` is discontinuous at `x=pi` which is a point in the interval `[0,2pi]`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Consider the integral int_0^(2pi)(dx)/(5-2cosx) making the substitution tan(x/2)=t , we have I=int_0^(2pi)(dx)/(5-2cosx) =int_0^0(2dt)/((1+t^2)[5-2(1-t^2)/(1+t^2)])=0 The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

int_(0)^((pi)/(2))(dx)/(1+cosx)

int_(0)^((pi)/(2))(xdx)/(1+cosx)

Evaluate the following: int_0^(pi/2)dx/(1+cosx)

The integral int_0^(pi/2) dx/(x+sqrt(a^2-x^2)) equals

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^((pi)/(2))(dx)/(4+5cosx)=(1)/(3)log2

Find I=int_0^pi ln(1+cosx)dx

The value of the integral int_0^1e^(x^2)dx

The value of int_0^(pi/2)dx/(1+tan^3x) is

CENGAGE PUBLICATION-DEFINITE INTEGRATION -CAE_TYPE
  1. Find the value of int(0)^(4)[x]dx, where [.] represents the gretest in...

    Text Solution

    |

  2. If f(x)={1-|x|, |x|lt=1 and 0 , |x|>1 and g(x)=f(x-1)+f(x+1), find ...

    Text Solution

    |

  3. Consider the integral int0^(2pi)(dx)/(5-2cosx) making the substitution...

    Text Solution

    |

  4. Evaluate the following : int(0)^(pi)(dx)/(1+sinx)

    Text Solution

    |

  5. Evaluate: int1^oo (e^(x+1)+e^(3-x))^(-1)dx

    Text Solution

    |

  6. Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx

    Text Solution

    |

  7. Evaluate: int0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

    Text Solution

    |

  8. Evaluate the following : int(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2...

    Text Solution

    |

  9. Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

    Text Solution

    |

  10. Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))

    Text Solution

    |

  11. Prove that int0^(102)(x-1)(x-2)..(x-100)xx(1/(x-1)+1/(x-2)+.... .+ 1/...

    Text Solution

    |

  12. Show that : int0^1(logx)/((1+x))dx=-int0^1(log(1+x))/x dx

    Text Solution

    |

  13. If int0^1(e^t)/(1+t)dt=a , then find the value of int0^1(e^t)/((1+t)^2...

    Text Solution

    |

  14. Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7....

    Text Solution

    |

  15. Evaluate: ("lim")(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))+ .......

    Text Solution

    |

  16. Evaluate: underset(nrarrinfty)lim[(1/n^2sec^2(1/(n^2))+2/n^2sec^2((4)/...

    Text Solution

    |

  17. Evaluate ("lim")(n rarr oo)sum(k=1)^nk/(n^2+k^2)

    Text Solution

    |

  18. Evaluate the following limit: lim(nto oo)(sum(r=1)^(n) sqrt(r)sum(r=...

    Text Solution

    |

  19. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  20. Prove that 4 lt= int1^3 sqrt(3+x^2) dx lt= 4sqrt(3)

    Text Solution

    |