Home
Class 12
MATHS
If fa n dg are continuous function on [0...

If `fa n dg` are continuous function on `[0,a]` satisfying `f(x)=f(a-x)a n dg(x)(a-x)=2,` then show that `int_0^af(x)g(x)dx=int_0^af(x)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
NA

`int_(0)^(a)f(x)g(x)dx`
`=int_(0)^(a)f(a-x)g(a-x)dx`
`=int_(0)^(a)f(x).{2-g(x)}dx`
`=2int_(0)^(a)f(x)dx-int_(0)^(a)f(x)g(x)dx`
or `2int_(0)^(a)f(x)f(x)dx=2int_(0)^(a)f(x)dx`
or `int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot

Evaluate:If f(a-x)=f(x), then show that int_0^axf(x)dx=a/2int_0^af(x)dx

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

f,g,h are continuous in [0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5 . Then prove that int_(0)^(a)f(x)g(x)h(x)dx=0 .

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx