Home
Class 12
MATHS
Find the value of int(0)^(pi//2)sin2xlog...

Find the value of `int_(0)^(pi//2)sin2xlogtanxdx`.

Text Solution

Verified by Experts

The correct Answer is:
`0`

`I=int_(0)^(pi//2)sin2x log tan x dx`
`=int_(0)^(pi//2) sin2((pi)/2-x)"log tan"((pi)/2-x)dx`
`=-int_(0)^(pi//2)sin 2x log tan x dx=-1`
or `2I=0`
or `I=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_0^(pi/2)sin2xdx

Find the values of: int_(0)^((pi)/(2))sin4xcos2xdx

The value of int_0^(pi/4)sin2xdx is

Evaluate int_(0)^(pi/2)2sinxdx

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

Find the values of int_(0)^((pi)/(2))(sinxcosxdx)/(asin^(2)x+bcos^(2)x)(aneb)

Find the values of: int_(0)^((pi)/(2))sin^(4)xdx and

If f(x)={{:(sinx" when "-(pi)/(2)ltxlt(pi)/(2)),(|cosx-2|" otherwise"):} then find the value of int_(0)^(pi)f(x)dx .

The value of int_(0)^((pi)/(2))sin^(2)xdx is-

Find the value of int_(0)^(100pi)sin^(-1)(sin x)dx .