Home
Class 12
MATHS
The value of int-pi^pi cos^2x/[1+a^x]dx,...

The value of `int_-pi^pi cos^2x/[1+a^x]dx`, a > 0 is

Text Solution

Verified by Experts

The correct Answer is:
`pi//2`

Let `I=int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0` ………….. 1
`:.I=int_(-pi)^(pi)(cos^(2)x)/(1+a^(-x))dx` (Replacing `x` by `-x`)
or `I=int_(-pi)^(pi)(a^(x)cos^(2)x)/(1+a^(x))dx`…………….2
Adding 1 and 2 we get
`2I=4int_(0)^(pi//2)cos^(2)x dx`
`=2int_(0)^(pi//2)(1+cos2x)dx`
`=2[x+(sin2x)/2]_(0)^(pi//2)`
`-pi`
or `I=(pi)/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If a gt 0 , then the value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx is equal to -

The value of int_(pi)^(2pi)[ 2 cos x]dx is equal to -

The value of int_(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

The value of int_0^(pi/2)dx/(1+tan^3x) is

The value of int_0^pi sin^(50)x cos^(49)x dx is

The value of int_(0)^(pi)log sin^(2)x dx is equal to -

The value of int_(0)^(pi) e^(sin^(2)x) cos^(3)x dx is equal to -

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

STATEMENT 1: The value of int_0^(2pi)cos^(99)x dx is 0 STATEMENT 2: int_0^(2a)f(x)dx=2int_0^af(x)dx ,if f(2a-x)=f(x) which of the statement is correct?Is statement 2 correct explanation of statement 1?