Home
Class 12
MATHS
For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^...

For `U_n=int_0^1x^n(2-x)^n dx ; V_n=int_0^1x^n(1-x)^ndxn in N ,` which of the following statement(s) is/are true?
(a)`U_n=2^n V_n` (b) `U_n=2^(-n)V_n` `U_n=2^(2n)V_n` (d) `V_n=2^(-2n)U_n`

Text Solution

Verified by Experts

The correct Answer is:
NA

We have `U_(n)=int_(0)^(1)x^(n).(2-x)^(n)dx`
Put `x=2t`
`:. dx=2dt`
`:. U_(n)=2int_(0)^(1//2)2^(n).t^(n)2^(n)(1-t)^(n)dt`
`:.U_(n)=2^(2n+1)int_(0)^(1//2)x^(n)(1-x)^(n)dx`…………..1
Now `V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx`
`=2int_(0)^(1//2)x^(n)(1-x)^(n)dx`................2
From 1 and 2
`U_(n)=2^(2n).V_(n)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int dx/(x^n(1+x^n)^(1/n)) is

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

If alpha and beta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a) A_(n+1)=a A_n+b A_(n-1) b) A_(n+1)=b A_(n-1)+a A_n c) A_(n+1)=a A_n-b A_(n-1) d) A_(n+1)=b A_(n-1)-a A_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

Let n be a natural number such that n gt 4 and U_(n) =sin ^(n) x+ cos ^(n)x. Then which of the following is correct ?

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

If S_(n) = u_(1) +u_(2) + ….+ u_(n) = n^(2) + 2n , find the first four terms of the series.

CENGAGE PUBLICATION-DEFINITE INTEGRATION -CAE_TYPE
  1. Find the value of int(0)^(2pi)1/(1+tan^(4)x)dx

    Text Solution

    |

  2. int0^(2pi)sin^(100)xcos^(99)x dx equals to ?

    Text Solution

    |

  3. For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^n(1-x)^ndxn in N , which of ...

    Text Solution

    |

  4. Evaluate: int0^pi log(1+cosx)dx

    Text Solution

    |

  5. Find the value of int0^1(sin^(-1)x)dx

    Text Solution

    |

  6. Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

    Text Solution

    |

  7. If I1=int0^pixf(sin^3x+cos^2x)dxand I2=int0^(pi/2)f(sin^3x+cos^2x)dx ...

    Text Solution

    |

  8. Evaluate: int(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

    Text Solution

    |

  9. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  10. Evaluate: int(-pi)^pi(1-x^2)sinxcos^2xdx

    Text Solution

    |

  11. Evaluate: int(-1)^1(sinx-x^2)/(3-|x|)dx

    Text Solution

    |

  12. Evaluate: int(-1/2)^(1/2)cosxlog(1-x)/(1+x)dx

    Text Solution

    |

  13. Evaluate: int(-(3pi)/2)^(-pi/2)[(x+pi)^3+cos^2(x+3pi)]dx

    Text Solution

    |

  14. Evaluate: int0^(100)(x-[x]dx(w h e r e[dot] represents the greatest i...

    Text Solution

    |

  15. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  16. Ifint0^(npi)f(cos^2x)dx=kint0^pif(cos^2x)dx ,t h e nfin dt h ev a l u ...

    Text Solution

    |

  17. Evaluate int(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsil...

    Text Solution

    |

  18. Find the value of : int0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denote...

    Text Solution

    |

  19. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  20. Show that int0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integ...

    Text Solution

    |