Home
Class 12
MATHS
Given Im=int1^e(logx)^mdx ,then prove t...

Given `I_m=int_1^e(logx)^mdx `,then prove that`(I_m)/(1-m)+m I_(m-2)=e`

Text Solution

Verified by Experts

The correct Answer is:
NA

`I_(m)=int_(1)^(e)(logx)^(m)dx`
`=(x(logx)^(m))_(1)^(e)-int_(1)^(e)x(m(logx)^(m-1))/xdx` (Integrating by parts)
`=e-m int_(1)^(e)(logx)^(m-1)dx=e-mI_(m-1)`…………..1
Replacing `m` by `m-1`, we get
`I_(m-1)=e-(m-1)I_(m-2)`…………..2
From 1 and 2 we have `I_(m)=e-m[e-(m-1)I_(m-2)]`
or `I_(m)-m(m-1)I_(m-2)=e(1-m)`
or `(I_(m)).(1-m)+mI_(m-2)=e`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(m)=int_(1)^(e)(log_(e)x)^(m)dx , then prove that, I_(m)=e-mI_(m-1)

If I_(m)=int_(1)^(e)(logx)^(m)dx , show that, I_(m)+mI_(m-1)lt3 .

If I_m=int_1^x(logx)^mdx satisfies the relation (I_m)=k-l I_(m-1) then

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -

If I_(m)=int_(1)^(x)(logx)^(m)dx satisfies the relation I_(m)=x(logx)^(m)-l I_(m-1) , then which one of the following is correct ?

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I_(1)=int e^(x) cos x dx and I_(2)=int e^(x) sin x dx , then the value of I_(1)+I_(2) is-

m(m-1)(m-2)...3.2.1=

If I_1= int_e^(e^2)dx/logx and I_2= int_1^2e^x/xdx , then find relation between I_1 and I_2

CENGAGE PUBLICATION-DEFINITE INTEGRATION -CAE_TYPE
  1. Evaluate (lim)(x to 4)int4^x((4t-f(t)))/((x-4))dt

    Text Solution

    |

  2. Evaluate: lim(xto0)(int(0)^(x^(2))cos^(2)tdt)/(xsinx)

    Text Solution

    |

  3. Find the points of minima for f(x)=int0^x t(t-1)(t-2)dt

    Text Solution

    |

  4. Find the equation of tangent to y=int(x^2)^(x^3)(dt)/(sqrt(1+t^2))a t...

    Text Solution

    |

  5. I f f(x)=int((pi^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta...

    Text Solution

    |

  6. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  7. Let f(x) be a differentiable function satisfying f(x)=int(0)^(x)e^((2t...

    Text Solution

    |

  8. Ifint0^1(e^t dt)/(t+1)=a ,then find the value of int(b-1)^b(e^(-t)dt)/...

    Text Solution

    |

  9. f(x)=int1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

    Text Solution

    |

  10. f(x)=int1^x(tan^(-1)(t))/t dt \ AAx in R^+, then find the value of f...

    Text Solution

    |

  11. Evaluate: int(sqrt(2)-1)^(sqrt(2)+1)((x^2-1))/((x^2+1)^2)dx

    Text Solution

    |

  12. Evaluate: int0^(e-1)((x^2+2x-1)/2)/(x+1)dx+int1^e xlogx e^(x^(2-2)/2)d...

    Text Solution

    |

  13. Find the value of int(1/2)^(2)e^(|x-1/x|)dx.

    Text Solution

    |

  14. If I(1)=int(0)^(1)(dx)/(e^(x)(1+x)) and I(2)=int(0)^(pi//4)(e^(tan^(2)...

    Text Solution

    |

  15. If IK=int1^e(1nx)^kdx(k in I^+)dx(k in I^+), then find the value of ...

    Text Solution

    |

  16. Given Im=int1^e(logx)^mdx ,then prove that(Im)/(1-m)+m I(m-2)=e

    Text Solution

    |

  17. If I(n)=int(0)^(pi)x^(n)sinxdx, then find the value of I(5)+20I(3).

    Text Solution

    |

  18. If L(m,n)=int(0)^(1)t^(m)(1+t)^(n),dt, then prove that L(m,n)=(2^(n)...

    Text Solution

    |

  19. IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)In+(n-1)I(n-2...

    Text Solution

    |

  20. IfI(m , n)=int0^(pi/2)sin^m xcos^n xdx , Then show that I(m , n)=(m-1...

    Text Solution

    |