Home
Class 12
MATHS
sec^-1((1+tan ^2x)/(1-tan ^2 x))...

`sec^-1((1+tan ^2x)/(1-tan ^2 x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \sec^{-1}\left(\frac{1 + \tan^2 x}{1 - \tan^2 x}\right) \), we will follow these steps: ### Step 1: Simplify the Inner Function We start with the expression inside the secant inverse function: \[ \frac{1 + \tan^2 x}{1 - \tan^2 x} \] Using the identity \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \), we can rewrite this as: \[ \frac{1 + \frac{\sin^2 x}{\cos^2 x}}{1 - \frac{\sin^2 x}{\cos^2 x}} = \frac{\frac{\cos^2 x + \sin^2 x}{\cos^2 x}}{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x - \sin^2 x} \] Since \( \cos^2 x + \sin^2 x = 1 \), we have: \[ \frac{1}{\cos^2 x - \sin^2 x} \] ### Step 2: Further Simplify the Denominator Now, we can express \( \cos^2 x - \sin^2 x \) using the double angle identity: \[ \cos^2 x - \sin^2 x = \cos 2x \] Thus, we can rewrite our expression as: \[ \frac{1}{\cos 2x} \] This gives us: \[ \sec 2x \] ### Step 3: Rewrite the Original Function Now substituting back into our original function: \[ y = \sec^{-1}(\sec 2x) \] Since the secant inverse and secant functions are inverses of each other, we have: \[ y = 2x \] ### Step 4: Differentiate with Respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(2x) = 2 \] ### Final Answer Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int (1-tan^2x)/(1+tan^2x) dx

tan 4x = (4tan x(1-tan^2 x))/(1-6tan^2 x + tan^4 x

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

Prove that: tan4x=(4tanx(1-tan^2x))/(1-6tan^2x+tan^4x)

If y=tan^(-1)((2x)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove that (dy)/(dx)=4/(1+x^2) .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Find the set of values of x for which (tan 3x - tan 2x)/ (1+ tan3x tan 2x) = 1

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3