Home
Class 12
MATHS
cosec^(-1)((1+tan ^2x)/(2tanx))...

`cosec^(-1)((1+tan ^2x)/(2tanx))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating the expression \( y = \csc^{-1}\left(\frac{1 + \tan^2 x}{2 \tan x}\right) \), we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ y = \csc^{-1}\left(\frac{1 + \tan^2 x}{2 \tan x}\right) \] 2. **Simplify the Argument**: Recall the trigonometric identity: \[ 1 + \tan^2 x = \sec^2 x \] Therefore, we can rewrite the argument of the cosecant inverse: \[ \frac{1 + \tan^2 x}{2 \tan x} = \frac{\sec^2 x}{2 \tan x} \] 3. **Rewrite in Terms of Sine and Cosine**: We know that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite: \[ \sec^2 x = \frac{1}{\cos^2 x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Therefore, the expression becomes: \[ \frac{\frac{1}{\cos^2 x}}{2 \cdot \frac{\sin x}{\cos x}} = \frac{1}{2 \sin x \cos x} \] 4. **Use the Double Angle Identity**: We know that: \[ 2 \sin x \cos x = \sin(2x) \] So, we can express our argument as: \[ \frac{1}{\sin(2x)} \] Hence, we can rewrite \( y \) as: \[ y = \csc^{-1}(\csc(2x)) \] 5. **Simplify the Inverse Cosecant**: Since \( \csc^{-1}(\csc(2x)) = 2x \) (for \( x \) in the appropriate range), we have: \[ y = 2x \] 6. **Differentiate with Respect to x**: Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(2x) = 2 \] ### Final Answer: The derivative of the given expression is: \[ \frac{dy}{dx} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) intcot^(-1)((sin2x)/(1-cos2x))\ dx (ii) intsin^(-1)((2tanx)/(1+tan^2x))\ dx

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

Let f(x) = sin (sin^-1 2x) + cosec (cosec^-1 2x) + tan(tan^-1 2x) , then which one of the following statements is/are incorrect ?

Prove that: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

The value of lim_(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos^(2)(tanx))) is ………..

If int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). g(x)+k, then g ((5pi)/(4))=